DOI QR코드

DOI QR Code

Reversal of liver cirrhosis: current evidence and expectations

  • Jung, Young Kul (Division of Gastroenterology and Hepatology, Department of Internal Medicine, Korea University Ansan Hospital) ;
  • Yim, Hyung Joon (Division of Gastroenterology and Hepatology, Department of Internal Medicine, Korea University Ansan Hospital)
  • Received : 2016.08.12
  • Accepted : 2016.12.23
  • Published : 2017.03.01

Abstract

In the past, liver cirrhosis was considered an irreversible phenomenon. However, many experimental data have provided evidence of the reversibility of liver fibrosis. Moreover, multiple clinical studies have also shown regression of fibrosis and reversal of cirrhosis on repeated biopsy samples. As various etiologies are associated with liver fibrosis via integrated signaling pathways, a comprehensive understanding of the pathobiology of hepatic fibrogenesis is critical for improving clinical outcomes. Hepatic stellate cells play a central role in hepatic fibrogenesis upon their activation from a quiescent state. Collagen and other extracellular material components from activated hepatic stellate cells are deposited on, and damage, the liver parenchyma and vascular structures. Hence, inactivation of hepatic stellate cells can lead to enhancement of fibrolytic activity and could be a potential target of antifibrotic therapy. In this regard, continued efforts have been made to develop better treatments for underlying liver diseases and antifibrotic agents in multiple clinical and therapeutic trials; the best results may be expected with the integration of such evidence. In this article, we present the underlying mechanisms of fibrosis, current experimental and clinical evidence of the reversibility of liver fibrosis/cirrhosis, and new agents with therapeutic potential for liver fibrosis.

Keywords

References

  1. Baik SJ, Kim TH, Yoo K, et al. Decreased S100B expression in chronic liver diseases. Korean J Intern Med 2016 Jun 3 [Epub]. http://doi.org/10.3904/kjim.2015.296.
  2. Friedman SL. Mechanisms of hepatic fibrogenesis. Gastroenterology 2008;134:1655-1669. https://doi.org/10.1053/j.gastro.2008.03.003
  3. Ueno T, Sata M, Sakata R, et al. Hepatic stellate cells and intralobular innervation in human liver cirrhosis. Hum Pathol 1997;28:953-959. https://doi.org/10.1016/S0046-8177(97)90011-3
  4. Hellerbrand C, Stefanovic B, Giordano F, Burchardt ER, Brenner DA. The role of TGFbeta1 in initiating hepatic stellate cell activation in vivo. J Hepatol 1999;30:77-87. https://doi.org/10.1016/S0168-8278(99)80010-5
  5. Bataller R, Brenner DA. Liver fibrosis. J Clin Invest 2005;115:209-218. https://doi.org/10.1172/JCI24282
  6. Krizhanovsky V, Yon M, Dickins RA, et al. Senescence of activated stellate cells limits liver fibrosis. Cell 2008;134:657-667. https://doi.org/10.1016/j.cell.2008.06.049
  7. Mormone E, George J, Nieto N. Molecular pathogenesis of hepatic fibrosis and current therapeutic approaches. Chem Biol Interact 2011;193:225-231. https://doi.org/10.1016/j.cbi.2011.07.001
  8. Nieto N. Oxidative-stress and IL-6 mediate the fibrogenic effects of [corrected] Kupffer cells on stellate cells. Hepatology 2006;44:1487-1501. https://doi.org/10.1002/hep.21427
  9. Kisseleva T, Brenner DA. Role of hepatic stellate cells in fibrogenesis and the reversal of fibrosis. J Gastroenterol Hepatol 2007;22 Suppl 1:S73-S78. https://doi.org/10.1111/j.1440-1746.2006.04658.x
  10. Sanz-Cameno P, Medina J, Garcia-Buey L, et al. Enhanced intrahepatic inducible nitric oxide synthase expression and nitrotyrosine accumulation in primary biliary cirrhosis and autoimmune hepatitis. J Hepatol 2002;37:723-729. https://doi.org/10.1016/S0168-8278(02)00266-0
  11. Zhan SS, Jiang JX, Wu J, et al. Phagocytosis of apoptotic bodies by hepatic stellate cells induces NADPH oxidase and is associated with liver fibrosis in vivo. Hepatology 2006;43:435-443. https://doi.org/10.1002/hep.21093
  12. Iwakiri Y. Nitric oxide in liver fibrosis: the role of inducible nitric oxide synthase. Clin Mol Hepatol 2015;21:319-325. https://doi.org/10.3350/cmh.2015.21.4.319
  13. De Minicis S, Brenner DA. NOX in liver fibrosis. Arch Biochem Biophys 2007;462:266-272. https://doi.org/10.1016/j.abb.2007.04.016
  14. Hayashi H, Sakai T. Biological significance of local TGF-$\beta$ activation in liver diseases. Front Physiol 2012;3:12.
  15. Bataller R, Sancho-Bru P, Gines P, et al. Activated human hepatic stellate cells express the renin-angiotensin system and synthesize angiotensin II. Gastroenterology 2003;125:117-125. https://doi.org/10.1016/S0016-5085(03)00695-4
  16. Wasmuth HE, Trautwein C. CB1 cannabinoid receptor antagonism: a new strategy for the treatment of liver fibrosis. Hepatology 2007;45:543-544. https://doi.org/10.1002/hep.21527
  17. Julien B, Grenard P, Teixeira-Clerc F, et al. Antifibrogenic role of the cannabinoid receptor CB2 in the liver. Gastroenterology 2005;128:742-755. https://doi.org/10.1053/j.gastro.2004.12.050
  18. Marra F, Bertolani C. Adipokines in liver diseases. Hepatology 2009;50:957-969. https://doi.org/10.1002/hep.23046
  19. Bomble M, Tacke F, Rink L, Kovalenko E, Weiskirchen R. Analysis of antigen-presenting functionality of cultured rat hepatic stellate cells and transdifferentiated myofibroblasts. Biochem Biophys Res Commun 2010;396:342-347. https://doi.org/10.1016/j.bbrc.2010.04.094
  20. Schuppan D, Kim YO. Evolving therapies for liver fibrosis. J Clin Invest 2013;123:1887-1901. https://doi.org/10.1172/JCI66028
  21. Thabut D, Shah V. Intrahepatic angiogenesis and sinusoidal remodeling in chronic liver disease: new targets for the treatment of portal hypertension? J Hepatol 2010;53:976-980. https://doi.org/10.1016/j.jhep.2010.07.004
  22. Muhanna N, Abu Tair L, Doron S, et al. Amelioration of hepatic fibrosis by NK cell activation. Gut 2011;60:90-98. https://doi.org/10.1136/gut.2010.211136
  23. Tiggelman AM, Boers W, Linthorst C, Brand HS, Sala M, Chamuleau RA. Interleukin-6 production by human liver (myo)fibroblasts in culture: evidence for a regulatory role of LPS, IL-1 beta and TNF alpha. J Hepatol 1995;23:295-306.
  24. Schwabe RF, Bataller R, Brenner DA. Human hepatic stellate cells express CCR5 and RANTES to induce proliferation and migration. Am J Physiol Gastrointest Liver Physiol 2003;285:G949-G958. https://doi.org/10.1152/ajpgi.00215.2003
  25. Li Z, Yang S, Lin H, et al. Probiotics and antibodies to TNF inhibit inflammatory activity and improve nonalcoholic fatty liver disease. Hepatology 2003;37:343-350. https://doi.org/10.1053/jhep.2003.50048
  26. Wasmuth HE, Tacke F, Trautwein C. Chemokines in liver inflammation and fibrosis. Semin Liver Dis 2010;30:215-225. https://doi.org/10.1055/s-0030-1255351
  27. Jiang JX, Venugopal S, Serizawa N, et al. Reduced nicotinamide adenine dinucleotide phosphate oxidase 2 plays a key role in stellate cell activation and liver fibrogenesis in vivo. Gastroenterology 2010;139:1375-1384. https://doi.org/10.1053/j.gastro.2010.05.074
  28. Jiang JX, Mikami K, Venugopal S, Li Y, Torok NJ. Apoptotic body engulfment by hepatic stellate cells promotes their survival by the JAK/STAT and Akt/NF-kappaB-dependent pathways. J Hepatol 2009;51:139-148. https://doi.org/10.1016/j.jhep.2009.03.024
  29. Jeong WI, Park O, Suh YG, et al. Suppression of innate immunity (natural killer cell/interferon-$\gamma$) in the advanced stages of liver fibrosis in mice. Hepatology 2011;53:1342-1351. https://doi.org/10.1002/hep.24190
  30. Hellerbrand, Wang SC, Tsukamoto H, Brenner DA, Rippe RA. Expression of intracellular adhesion molecule 1 by activated hepatic stellate cells. Hepatology 1996;24:670-676. https://doi.org/10.1002/hep.510240333
  31. Knittel T, Dinter C, Kobold D, et al. Expression and regulation of cell adhesion molecules by hepatic stellate cells (HSC) of rat liver: involvement of HSC in recruitment of inflammatory cells during hepatic tissue repair. Am J Pathol 1999;154:153-167. https://doi.org/10.1016/S0002-9440(10)65262-5
  32. Wynn TA, Ramalingam TR. Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nat Med 2012;18:1028-1040. https://doi.org/10.1038/nm.2807
  33. Wilson MS, Wynn TA. Pulmonary fibrosis: pathogenesis, etiology and regulation. Mucosal Immunol 2009;2:103-121. https://doi.org/10.1038/mi.2008.85
  34. Wynn TA, Cheever AW, Jankovic D, et al. An IL-12-based vaccination method for preventing fibrosis induced by schistosome infection. Nature 1995;376:594-596. https://doi.org/10.1038/376594a0
  35. Marra F, Aleffi S, Galastri S, Provenzano A. Mononuclear cells in liver fibrosis. Semin Immunopathol 2009;31:345-358. https://doi.org/10.1007/s00281-009-0169-0
  36. Zimmermann HW, Seidler S, Nattermann J, et al. Functional contribution of elevated circulating and hepatic non-classical CD14CD16 monocytes to inflammation and human liver fibrosis. PLoS One 2010;5:e11049. https://doi.org/10.1371/journal.pone.0011049
  37. Duffield JS, Forbes SJ, Constandinou CM, et al. Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair. J Clin Invest 2005;115:56-65. https://doi.org/10.1172/JCI200522675
  38. Miura K, Yang L, van Rooijen N, Ohnishi H, Seki E. Hepatic recruitment of macrophages promotes nonalcoholic steatohepatitis through CCR2. Am J Physiol Gastrointest Liver Physiol 2012;302:G1310-G1321. https://doi.org/10.1152/ajpgi.00365.2011
  39. Kisseleva T, Brenner DA. The phenotypic fate and functional role for bone marrow-derived stem cells in liver fibrosis. J Hepatol 2012;56:965-972. https://doi.org/10.1016/j.jhep.2011.09.021
  40. Albillos A, Lario M, Alvarez-Mon M. Cirrhosis-associated immune dysfunction: distinctive features and clinical relevance. J Hepatol 2014;61:1385-1396. https://doi.org/10.1016/j.jhep.2014.08.010
  41. Ubeda M, Munoz L, Borrero MJ, et al. Critical role of the liver in the induction of systemic inflammation in rats with preascitic cirrhosis. Hepatology 2010;52:2086-2095. https://doi.org/10.1002/hep.23961
  42. Kubes P, Mehal WZ. Sterile inflammation in the liver. Gastroenterology 2012;143:1158-1172. https://doi.org/10.1053/j.gastro.2012.09.008
  43. Song Y, Zhao Y, Wang F, Tao L, Xiao J, Yang C. Autophagy in hepatic fibrosis. Biomed Res Int 2014;2014:436242.
  44. Senoo H, Yoshikawa K, Morii M, Miura M, Imai K, Mezaki Y. Hepatic stellate cell (vitamin A-storing cell) and its relative: past, present and future. Cell Biol Int 2010;34:1247-1272. https://doi.org/10.1042/CBI20100321
  45. Thoen LF, Guimaraes EL, Dolle L, et al. A role for autophagy during hepatic stellate cell activation. J Hepatol 2011;55:1353-1360. https://doi.org/10.1016/j.jhep.2011.07.010
  46. Gressner AM, Polzar B, Lahme B, Mannherz HG. Induction of rat liver parenchymal cell apoptosis by hepatic myofibroblasts via transforming growth factor beta. Hepatology 1996;23:571-581.
  47. Gressner AM, Bachem MG. Molecular mechanisms of liver fibrogenesis: a homage to the role of activated fat-storing cells. Digestion 1995;56:335-346. https://doi.org/10.1159/000201257
  48. Derynck R, Zhang YE. Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature 2003;425:577-584. https://doi.org/10.1038/nature02006
  49. Latella G, Vetuschi A, Sferra R, et al. Targeted disruption of Smad3 confers resistance to the development of dimethylnitrosamine-induced hepatic fibrosis in mice. Liver Int 2009;29:997-1009. https://doi.org/10.1111/j.1478-3231.2009.02011.x
  50. Dooley S, Hamzavi J, Ciuclan L, et al. Hepatocyte-specific Smad7 expression attenuates TGF-beta-mediated fibrogenesis and protects against liver damage. Gastroenterology 2008;135:642-659. https://doi.org/10.1053/j.gastro.2008.04.038
  51. Garzon R, Marcucci G, Croce CM. Targeting microRNAs in cancer: rationale, strategies and challenges. Nat Rev Drug Discov 2010;9:775-789. https://doi.org/10.1038/nrd3179
  52. Noetel A, Kwiecinski M, Elfimova N, Huang J, Odenthal M. MicroRNA are central players in anti- and profibrotic gene regulation during liver fibrosis. Front Physiol 2012;3:49.
  53. Roderburg C, Urban GW, Bettermann K, et al. Micro-RNA profiling reveals a role for miR-29 in human and murine liver fibrosis. Hepatology 2011;53:209-218. https://doi.org/10.1002/hep.23922
  54. Lakner AM, Steuerwald NM, Walling TL, et al. Inhibitory effects of microRNA 19b in hepatic stellate cell-mediated fibrogenesis. Hepatology 2012;56:300-310.
  55. Guimaraes EL, Empsen C, Geerts A, van Grunsven LA. Advanced glycation end products induce production of reactive oxygen species via the activation of NADPH oxidase in murine hepatic stellate cells. J Hepatol 2010;52:389-397.
  56. Benyon RC, Iredale JP, Goddard S, Winwood PJ, Arthur MJ. Expression of tissue inhibitor of metalloproteinases 1 and 2 is increased in fibrotic human liver. Gastroenterology 1996;110:821-831. https://doi.org/10.1053/gast.1996.v110.pm8608892
  57. Iredale JP, Benyon RC, Pickering J, et al. Mechanisms of spontaneous resolution of rat liver fibrosis. Hepatic stellate cell apoptosis and reduced hepatic expression of metalloproteinase inhibitors. J Clin Invest 1998;102:538-549. https://doi.org/10.1172/JCI1018
  58. Murphy FR, Issa R, Zhou X, et al. Inhibition of apoptosis of activated hepatic stellate cells by tissue inhibitor of metalloproteinase-1 is mediated via effects on matrix metalloproteinase inhibition: implications for reversibility of liver fibrosis. J Biol Chem 2002;277:11069-11076. https://doi.org/10.1074/jbc.M111490200
  59. Iredale J. Defining therapeutic targets for liver fibrosis: exploiting the biology of inflammation and repair. Pharmacol Res 2008;58:129-136. https://doi.org/10.1016/j.phrs.2008.06.011
  60. Iredale JP, Benyon RC, Arthur MJ, et al. Tissue inhibitor of metalloproteinase-1 messenger RNA expression is enhanced relative to interstitial collagenase messenger RNA in experimental liver injury and fibrosis. Hepatology 1996;24:176-184. https://doi.org/10.1002/hep.510240129
  61. Issa R, Zhou X, Constandinou CM, et al. Spontaneous recovery from micronodular cirrhosis: evidence for incomplete resolution associated with matrix cross-linking. Gastroenterology 2004;126:1795-1808. https://doi.org/10.1053/j.gastro.2004.03.009
  62. Parsons CJ, Bradford BU, Pan CQ, et al. Antifibrotic effects of a tissue inhibitor of metalloproteinase-1 antibody on established liver fibrosis in rats. Hepatology 2004;40:1106-1115. https://doi.org/10.1002/hep.20425
  63. Fallowfield JA, Mizuno M, Kendall TJ, et al. Scar-associated macrophages are a major source of hepatic matrix metalloproteinase-13 and facilitate the resolution of murine hepatic fibrosis. J Immunol 2007;178:5288-5295. https://doi.org/10.4049/jimmunol.178.8.5288
  64. Pellicoro A, Aucott RL, Ramachandran P, et al. Elastin accumulation is regulated at the level of degradation by macrophage metalloelastase (MMP-12) during experimental liver fibrosis. Hepatology 2012;55:1965-1975. https://doi.org/10.1002/hep.25567
  65. Tacke F, Zimmermann HW. Macrophage heterogeneity in liver injury and fibrosis. J Hepatol 2014;60:1090-1096.
  66. Jiao J, Sastre D, Fiel MI, et al. Dendritic cell regulation of carbon tetrachloride-induced murine liver fibrosis regression. Hepatology 2012;55:244-255. https://doi.org/10.1002/hep.24621
  67. Mallat A, Lotersztajn S. Reversion of hepatic stellate cell to a quiescent phenotype: from myth to reality? J Hepatol 2013;59:383-386. https://doi.org/10.1016/j.jhep.2013.03.031
  68. Troeger JS, Mederacke I, Gwak GY, et al. Deactivation of hepatic stellate cells during liver fibrosis resolution in mice. Gastroenterology 2012;143:1073-1083. https://doi.org/10.1053/j.gastro.2012.06.036
  69. Kisseleva T, Cong M, Paik Y, et al. Myofibroblasts revert to an inactive phenotype during regression of liver fibrosis. Proc Natl Acad Sci U S A 2012;109:9448-9453. https://doi.org/10.1073/pnas.1201840109
  70. Pellicoro A, Ramachandran P, Iredale JP, Fallowfield JA. Liver fibrosis and repair: immune regulation of wound healing in a solid organ. Nat Rev Immunol 2014;14:181-194. https://doi.org/10.1038/nri3623
  71. Ellis EL, Mann DA. Clinical evidence for the regression of liver fibrosis. J Hepatol 2012;56:1171-1180. https://doi.org/10.1016/j.jhep.2011.09.024
  72. van Zonneveld M, Zondervan PE, Cakaloglu Y, et al. Peg-interferon improves liver histology in patients with HBeAg-positive chronic hepatitis B: no additional benefit of combination with lamivudine. Liver Int 2006;26:399-405. https://doi.org/10.1111/j.1478-3231.2006.01257.x
  73. Dienstag JL, Goldin RD, Heathcote EJ, et al. Histological outcome during long-term lamivudine therapy. Gastroenterology 2003;124:105-117. https://doi.org/10.1053/gast.2003.50013
  74. Chang TT, Liaw YF, Wu SS, et al. Long-term entecavir therapy results in the reversal of fibrosis/cirrhosis and continued histological improvement in patients with chronic hepatitis B. Hepatology 2010;52:886-893. https://doi.org/10.1002/hep.23785
  75. Marcellin P, Gane E, Buti M, et al. Regression of cirrhosis during treatment with tenofovir disoproxil fumarate for chronic hepatitis B: a 5-year open-label follow-up study. Lancet 2013;381:468-475. https://doi.org/10.1016/S0140-6736(12)61425-1
  76. George SL, Bacon BR, Brunt EM, Mihindukulasuriya KL, Hoffmann J, Di Bisceglie AM. Clinical, virologic, histologic, and biochemical outcomes after successful HCV therapy: a 5-year follow-up of 150 patients. Hepatology 2009;49:729-738. https://doi.org/10.1002/hep.22694
  77. Verrill C, Markham H, Templeton A, Carr NJ, Sheron N. Alcohol-related cirrhosis: early abstinence is a key factor in prognosis, even in the most severe cases. Addiction 2009;104:768-774. https://doi.org/10.1111/j.1360-0443.2009.02521.x
  78. Sanyal AJ, Chalasani N, Kowdley KV, et al. Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis. N Engl J Med 2010;362:1675-1685. https://doi.org/10.1056/NEJMoa0907929
  79. Czaja AJ, Carpenter HA. Decreased fibrosis during corticosteroid therapy of autoimmune hepatitis. J Hepatol 2004;40:646-652.
  80. Mohamadnejad M, Malekzadeh R, Nasseri-Moghaddam S, et al. Impact of immunosuppressive treatment on liver fibrosis in autoimmune hepatitis. Dig Dis Sci 2005;50:547-551. https://doi.org/10.1007/s10620-005-2472-5
  81. Colmenero J, Bataller R, Sancho-Bru P, et al. Effects of losartan on hepatic expression of nonphagocytic NADPH oxidase and fibrogenic genes in patients with chronic hepatitis C. Am J Physiol Gastrointest Liver Physiol 2009;297:G726-G734. https://doi.org/10.1152/ajpgi.00162.2009
  82. McHutchison J, Goodman Z, Patel K, et al. Farglitazar lacks antifibrotic activity in patients with chronic hepatitis C infection. Gastroenterology 2010;138:1365-1373. https://doi.org/10.1053/j.gastro.2009.12.003
  83. Kim MY, Cho MY, Baik SK, et al. Beneficial effects of candesartan, an angiotensin-blocking agent, on compensated alcoholic liver fibrosis: a randomized open-label controlled study. Liver Int 2012;32:977-987. https://doi.org/10.1111/j.1478-3231.2012.02774.x
  84. Aithal GP, Thomas JA, Kaye PV, et al. Randomized, placebo-controlled trial of pioglitazone in nondiabetic subjects with nonalcoholic steatohepatitis. Gastroenterology 2008;135:1176-1184. https://doi.org/10.1053/j.gastro.2008.06.047
  85. Ratziu V, Charlotte F, Bernhardt C, et al. Long-term efficacy of rosiglitazone in nonalcoholic steatohepatitis: results of the fatty liver improvement by rosiglitazone therapy (FLIRT 2) extension trial. Hepatology 2010;51:445-453. https://doi.org/10.1002/hep.23270
  86. Zein CO, Yerian LM, Gogate P, et al. Pentoxifylline improves nonalcoholic steatohepatitis: a randomized placebo-controlled trial. Hepatology 2011;54:1610-1619. https://doi.org/10.1002/hep.24544
  87. Ratziu V, de Ledinghen V, Oberti F, et al. A randomized controlled trial of high-dose ursodesoxycholic acid for nonalcoholic steatohepatitis. J Hepatol 2011;54:1011-1019. https://doi.org/10.1016/j.jhep.2010.08.030
  88. Neuschwander-Tetri BA, Loomba R, Sanyal AJ, et al. Farnesoid X nuclear receptor ligand obeticholic acid for non-cirrhotic, non-alcoholic steatohepatitis (FLINT): a multicentre, randomised, placebo-controlled trial. Lancet 2015;385:956-965. https://doi.org/10.1016/S0140-6736(14)61933-4
  89. Poupon RE, Poupon R, Balkau B. Ursodiol for the longterm treatment of primary biliary cirrhosis: the UDCA-PBC Study Group. N Engl J Med 1994;330:1342-1327. https://doi.org/10.1056/NEJM199405123301903
  90. Corpechot C, Carrat F, Bonnand AM, Poupon RE, Poupon R. The effect of ursodeoxycholic acid therapy on liver fibrosis progression in primary biliary cirrhosis. Hepatology 2000;32:1196-1199. https://doi.org/10.1053/jhep.2000.20240
  91. Korean Association for the Study of the Liver. KASL clinical practice guidelines: management of chronic hepatitis B. Clin Mol Hepatol 2016;22:18-75. https://doi.org/10.3350/cmh.2016.22.1.18
  92. Liaw YF. Reversal of cirrhosis: an achievable goal of hepatitis B antiviral therapy. J Hepatol 2013;59:880-881. https://doi.org/10.1016/j.jhep.2013.05.007
  93. Papatheodoridis GV, Petraki K, Cholongitas E, Kanta E, Ketikoglou I, Manesis EK. Impact of interferon-alpha therapy on liver fibrosis progression in patients with HBeAg-negative chronic hepatitis B. J Viral Hepat 2005;12:199-206. https://doi.org/10.1111/j.1365-2893.2005.00582.x
  94. Chang XM, Chang Y, Jia A. Effects of interferon-alpha on expression of hepatic stellate cell and transforming growth factor-beta1 and alpha-smooth muscle actin in rats with hepatic fibrosis. World J Gastroenterol 2005;11:2634-2636. https://doi.org/10.3748/wjg.v11.i17.2634
  95. Weng H, Mertens PR, Gressner AM, Dooley S. IFN-gamma abrogates profibrogenic TGF-beta signaling in liver by targeting expression of inhibitory and receptor Smads. J Hepatol 2007;46:295-303.
  96. Fung J, Lai CL, Wong DK, Seto WK, Hung I, Yuen MF. Significant changes in liver stiffness measurements in patients with chronic hepatitis B: 3-year follow-up study. J Viral Hepat 2011;18:e200-e205. https://doi.org/10.1111/j.1365-2893.2010.01428.x
  97. Kim SU, Park JY, Kim DY, et al. Non-invasive assessment of changes in liver fibrosis via liver stiffness measurement in patients with chronic hepatitis B: impact of antiviral treatment on fibrosis regression. Hepatol Int 2010;4:673-680. https://doi.org/10.1007/s12072-010-9201-7
  98. Shin SK, Kim JH, Park H, et al. Improvement of liver function and non-invasive fibrosis markers in hepatitis B virus-associated cirrhosis: 2 years of entecavir treatment. J Gastroenterol Hepatol 2015;30:1775-1781. https://doi.org/10.1111/jgh.13020
  99. Yo IK, Kwon OS, Park JW, et al. The factors associated with longitudinal changes in liver stiffness in patients with chronic hepatitis B. Clin Mol Hepatol 2015;21:32-40. https://doi.org/10.3350/cmh.2015.21.1.32
  100. Everson GT. Management of cirrhosis due to chronic hepatitis C. J Hepatol 2005;42 Suppl:S65-S74. https://doi.org/10.1016/j.jhep.2005.01.009
  101. Veldt BJ, Heathcote EJ, Wedemeyer H, et al. Sustained virologic response and clinical outcomes in patients with chronic hepatitis C and advanced fibrosis. Ann Intern Med 2007;147:677-684. https://doi.org/10.7326/0003-4819-147-10-200711200-00003
  102. Bachofner JA, Valli PV, Kroger A, et al. Direct antiviral agent treatment of chronic hepatitis C results in rapid regression of transient elastography and fibrosis markers fibrosis-4 score and aspartate aminotransferase-platelet ratio index. Liver Int 2016 Sep 28 [Epub]. http://doi.org/10.1111/liv.13256.
  103. Rambaldi A, Gluud C. Colchicine for alcoholic and non-alcoholic liver fibrosis and cirrhosis. Cochrane Database Syst Rev 2005;(2):CD002148.
  104. Musso G, Gambino R, Cassader M, Pagano G. A meta-analysis of randomized trials for the treatment of nonalcoholic fatty liver disease. Hepatology 2010;52:79-104.
  105. Promrat K, Kleiner DE, Niemeier HM, et al. Randomized controlled trial testing the effects of weight loss on nonalcoholic steatohepatitis. Hepatology 2010;51:121-129. https://doi.org/10.1002/hep.23276
  106. Neuschwander-Tetri BA. Targeting the FXR nuclear receptor to treat liver disease. Gastroenterology 2015;148:704-706. https://doi.org/10.1053/j.gastro.2015.02.037
  107. Roberts SK, Therneau TM, Czaja AJ. Prognosis of histological cirrhosis in type 1 autoimmune hepatitis. Gastroenterology 1996;110:848-857. https://doi.org/10.1053/gast.1996.v110.pm8608895
  108. Czaja AJ, Manns MP. Advances in the diagnosis, pathogenesis, and management of autoimmune hepatitis. Gastroenterology 2010;139:58-72. https://doi.org/10.1053/j.gastro.2010.04.053
  109. Czaja AJ. Review article: the prevention and reversal of hepatic fibrosis in autoimmune hepatitis. Aliment Pharmacol Ther 2014;39:385-406. https://doi.org/10.1111/apt.12592
  110. Karlsen TH, Vesterhus M, Boberg KM. Review article: controversies in the management of primary biliary cirrhosis and primary sclerosing cholangitis. Aliment Pharmacol Ther 2014;39:282-301. https://doi.org/10.1111/apt.12581
  111. Lindor KD, Gershwin ME, Poupon R, et al. Primary biliary cirrhosis. Hepatology 2009;50:291-308. https://doi.org/10.1002/hep.22906
  112. Goulis J, Leandro G, Burroughs AK. Randomised controlled trials of ursodeoxycholic-acid therapy for primary biliary cirrhosis: a meta-analysis. Lancet 1999;354:1053-1060. https://doi.org/10.1016/S0140-6736(98)11293-X
  113. Gong Y, Huang ZB, Christensen E, Gluud C. Ursodeoxycholic acid for primary biliary cirrhosis. Cochrane Database Syst Rev 2008;(3):CD000551.
  114. Prince MI, Chetwynd A, Craig WL, Metcalf JV, James OF. Asymptomatic primary biliary cirrhosis: clinical features, prognosis, and symptom progression in a large population based cohort. Gut 2004;53:865-870. https://doi.org/10.1136/gut.2003.023937
  115. Kaplan MM, Cheng S, Price LL, Bonis PA. A randomized controlled trial of colchicine plus ursodiol versus methotrexate plus ursodiol in primary biliary cirrhosis: ten-year results. Hepatology 2004;39:915-923. https://doi.org/10.1002/hep.20103
  116. Corpechot C. Primary biliary cirrhosis and bile acids. Clin Res Hepatol Gastroenterol 2012;36 Suppl 1:S13-S20. https://doi.org/10.1016/S2210-7401(12)70016-5
  117. Hirschfield GM, Mason A, Luketic V, et al. Efficacy of obeticholic acid in patients with primary biliary cirrhosis and inadequate response to ursodeoxycholic acid. Gastroenterology 2015;148:751-761. https://doi.org/10.1053/j.gastro.2014.12.005
  118. Bacon BR, Adams PC, Kowdley KV, Powell LW, Tavill AS; American Association for the Study of Liver Diseases. Diagnosis and management of hemochromatosis: 2011 practice guideline by the American Association for the Study of Liver Diseases. Hepatology 2011;54:328-343.
  119. Falize L, Guillygomarc'h A, Perrin M, et al. Reversibility of hepatic fibrosis in treated genetic hemochromatosis: a study of 36 cases. Hepatology 2006;44:472-477. https://doi.org/10.1002/hep.21260
  120. Mehal WZ, Schuppan D. Antifibrotic therapies in the liver. Semin Liver Dis 2015;35:184-198. https://doi.org/10.1055/s-0035-1550055
  121. Patsenker E, Popov Y, Stickel F, Jonczyk A, Goodman SL, Schuppan D. Inhibition of integrin alphavbeta6 on cholangiocytes blocks transforming growth factor-beta activation and retards biliary fibrosis progression. Gastroenterology 2008;135:660-670. https://doi.org/10.1053/j.gastro.2008.04.009
  122. Wang Q, Usinger W, Nichols B, et al. Cooperative interaction of CTGF and TGF-$\beta$ in animal models of fibrotic disease. Fibrogenesis Tissue Repair 2011;4:4. https://doi.org/10.1186/1755-1536-4-4
  123. Giannone FA, Baldassarre M, Domenicali M, et al. Reversal of liver fibrosis by the antagonism of endocannabinoid CB1 receptor in a rat model of CCl(4)-induced advanced cirrhosis. Lab Invest 2012;92:384-395. https://doi.org/10.1038/labinvest.2011.191
  124. Jiang JX, Chen X, Serizawa N, et al. Liver fibrosis and hepatocyte apoptosis are attenuated by GKT137831, a novel NOX4/NOX1 inhibitor in vivo. Free Radic Biol Med 2012;53:289-296. https://doi.org/10.1016/j.freeradbiomed.2012.05.007
  125. Staels B, Rubenstrunk A, Noel B, et al. Hepatoprotective effects of the dual peroxisome proliferator-activated receptor alpha/delta agonist, GFT505, in rodent models of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. Hepatology 2013;58:1941-1952. https://doi.org/10.1002/hep.26461
  126. Safadi R, Konikoff FM, Mahamid M, et al. The fatty acid-bile acid conjugate Aramchol reduces liver fat content in patients with nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol 2014;12:2085-2091. https://doi.org/10.1016/j.cgh.2014.04.038
  127. Gonzalez EO, Boix V, Deltoro MG, et al. The effects of Maraviroc on liver fibrosis in HIV/HCV co-infected patients. J Int AIDS Soc 2014;17(4 Suppl 3):19643. https://doi.org/10.7448/IAS.17.4.19643
  128. Yang JJ, Tao H, Li J. Hedgehog signaling pathway as key player in liver fibrosis: new insights and perspectives. Expert Opin Ther Targets 2014;18:1011-1021. https://doi.org/10.1517/14728222.2014.927443
  129. Samarakoon R, Overstreet JM, Higgins PJ. TGF-$\beta$ signaling in tissue fibrosis: redox controls, target genes and therapeutic opportunities. Cell Signal 2013;25:264-268. https://doi.org/10.1016/j.cellsig.2012.10.003
  130. Tam J, Cinar R, Liu J, et al. Peripheral cannabinoid-1 receptor inverse agonism reduces obesity by reversing leptin resistance. Cell Metab 2012;16:167-179. https://doi.org/10.1016/j.cmet.2012.07.002
  131. Baghdasaryan A, Claudel T, Gumhold J, et al. Dual farnesoid X receptor/TGR5 agonist INT-767 reduces liver injury in the Mdr2-/- (Abcb4-/-) mouse cholangiopathy model by promoting biliary $HCO^-_3$ output. Hepatology 2011;54:1303-1312. https://doi.org/10.1002/hep.24537
  132. Eom YW, Shim KY, Baik SK. Mesenchymal stem cell therapy for liver fibrosis. Korean J Intern Med 2015;30:580-589. https://doi.org/10.3904/kjim.2015.30.5.580

Cited by

  1. Clinical and Pathological Risk Factors Associated with Liver Fibrosis and Steatosis in African-Americans with Chronic Hepatitis C vol.62, pp.8, 2017, https://doi.org/10.1007/s10620-017-4626-7
  2. Transient Elastography (FibroScan) Performs Better Than Non-Invasive Markers in Assessing Liver Fibrosis and Cirrhosis in Autoimmune Hepatitis Patients vol.23, pp.None, 2017, https://doi.org/10.12659/msm.907300
  3. Metabolomic profiling for identification of metabolites and relevant pathways for taurine in hepatic stellate cells vol.23, pp.31, 2017, https://doi.org/10.3748/wjg.v23.i31.5713
  4. Fagonia indica Repairs Hepatic Damage through Expression Regulation of Toll-Like Receptors in a Liver Injury Model vol.2018, pp.None, 2017, https://doi.org/10.1155/2018/7967135
  5. Comparative evaluation of GPR versus APRI and FIB‐4 in predicting different levels of liver fibrosis of chronic hepatitis B vol.25, pp.5, 2018, https://doi.org/10.1111/jvh.12842
  6. New Concepts on Reversibility and Targeting of Liver Fibrosis; A Review Article vol.10, pp.3, 2018, https://doi.org/10.15171/mejdd.2018.103
  7. Transcriptional Regulatory Networks in Hepatitis C Virus-induced Hepatocellular Carcinoma vol.8, pp.None, 2017, https://doi.org/10.1038/s41598-018-32464-5
  8. Chemically modified liposomes carrying TRAIL target activated hepatic stellate cells and ameliorate hepatic fibrosis in vitro and in vivo vol.23, pp.3, 2017, https://doi.org/10.1111/jcmm.14097
  9. Polycomb Repressive Complex 2 Proteins EZH1 and EZH2 Regulate Timing of Postnatal Hepatocyte Maturation and Fibrosis by Repressing Genes With Euchromatic Promoters in Mice vol.156, pp.6, 2019, https://doi.org/10.1053/j.gastro.2019.01.041
  10. Early detection and staging of chronic liver diseases with a protein MRI contrast agent vol.10, pp.1, 2017, https://doi.org/10.1038/s41467-019-11984-2
  11. MRI as an alternative to serum ferritin for diagnosis of iron overload in children in the context of immune response after stem cell transplantation vol.23, pp.8, 2017, https://doi.org/10.1111/petr.13583
  12. The effect of vitamin D supplementation on the progression of fibrosis in patients with chronic liver disease : A protocol for a systematic review and meta-analysis vol.99, pp.19, 2020, https://doi.org/10.1097/md.0000000000020296
  13. Recompensation of Decompensated Hepatitis B Cirrhosis: Current Status and Challenges vol.2020, pp.None, 2017, https://doi.org/10.1155/2020/9609731
  14. Origin and role of hepatic myofibroblasts in hepatocellular carcinoma vol.11, pp.13, 2020, https://doi.org/10.18632/oncotarget.27532
  15. Decellularized liver matrix as substrates for rescue of acute hepatocytes toxicity vol.108, pp.4, 2017, https://doi.org/10.1002/jbm.b.34506
  16. Immunomodulatory effect of curcumin on hepatic cirrhosis in experimental rats vol.44, pp.6, 2017, https://doi.org/10.1111/jfbc.13219
  17. Ultrasound-based liver elastography in the assessment of fibrosis vol.75, pp.11, 2020, https://doi.org/10.1016/j.crad.2020.01.005
  18. Quantitative HBcrAg and HBcAb versus HBsAg and HBV DNA in predicting liver fibrosis levels of chronic hepatitis B patients vol.43, pp.9, 2017, https://doi.org/10.1016/j.gastre.2020.03.005
  19. Quantitative HBcrAg and HBcAb versus HBsAg and HBV DNA in predicting liver fibrosis levels of chronic hepatitis B patients vol.43, pp.9, 2020, https://doi.org/10.1016/j.gastrohep.2020.03.017
  20. The Role of the Gut Microbiome in Liver Cirrhosis Treatment vol.22, pp.1, 2021, https://doi.org/10.3390/ijms22010199
  21. Research Trends in the Efficacy of Stem Cell Therapy for Hepatic Diseases Based on MicroRNA Profiling vol.22, pp.1, 2021, https://doi.org/10.3390/ijms22010239
  22. Use of Texture Analysis on Noncontrast MRI in Classification of Early Stage of Liver Fibrosis vol.2021, pp.None, 2017, https://doi.org/10.1155/2021/6677821
  23. Molecular factors associated with regression of liver fibrosis of alcoholic etiology vol.93, pp.2, 2021, https://doi.org/10.26442/00403660.2021.02.200617
  24. The Gut Microbiota-Derived Immune Response in Chronic Liver Disease vol.22, pp.15, 2021, https://doi.org/10.3390/ijms22158309
  25. Cellular and Molecular Mechanisms Underlying Liver Fibrosis Regression vol.10, pp.10, 2017, https://doi.org/10.3390/cells10102759
  26. Cyclic GMP in Liver Cirrhosis-Role in Pathophysiology of Portal Hypertension and Therapeutic Implications vol.22, pp.19, 2017, https://doi.org/10.3390/ijms221910372
  27. Hepatocellular carcinoma risk after viral response in hepatitis C virus-advanced fibrosis: Who to screen and for how long? vol.27, pp.40, 2017, https://doi.org/10.3748/wjg.v27.i40.6737
  28. Hepatotoxicity or hepatoprotection of emodin? Two sides of the same coin by 1H-NMR metabolomics profiling vol.431, pp.None, 2017, https://doi.org/10.1016/j.taap.2021.115734
  29. The Gut-Liver Axis in Chronic Liver Disease: A Macrophage Perspective vol.10, pp.11, 2017, https://doi.org/10.3390/cells10112959
  30. Preventive and therapeutic role of betaine in liver disease: A review on molecular mechanisms vol.912, pp.None, 2021, https://doi.org/10.1016/j.ejphar.2021.174604
  31. Hepatic Stellate Cell: A Double-Edged Sword in the Liver vol.6, pp.None, 2017, https://doi.org/10.33549/physiolres.934755