DOI QR코드

DOI QR Code

환원된 그래핀 옥사이드/전도성 고분자 복합체를 이용한 플렉시블 에너지 저장 매체의 개발

Preparation of flexible energy storage device based on reduced graphene oxide (rGO)/conductive polymer composite

  • 정현택 (대진대학교 에너지환경공학부) ;
  • 조재봉 (대진대학교 에너지환경공학부) ;
  • 김장훈 (대진대학교 에너지환경공학부) ;
  • 김용렬 (대진대학교 에너지환경공학부)
  • Jeong, Hyeon Taek (Division of Energy and Environmental Engineering, Daejin University) ;
  • Cho, Jae Bong (Division of Energy and Environmental Engineering, Daejin University) ;
  • Kim, Jang Hun (Division of Energy and Environmental Engineering, Daejin University) ;
  • Kim, Yong Ryeol (Division of Energy and Environmental Engineering, Daejin University)
  • 투고 : 2017.05.24
  • 심사 : 2017.06.15
  • 발행 : 2017.06.30

초록

에너지 저장 매체는 소형화, 고효율화 및 그린에너지 정책에 부합하면서 연구개발이 진행되고 있으며 유연성과 신축성을 갖는 디스플레이나 웨어러블 전자기기의 발전에 상응하는 에너지 저장 매체의 개발이 시급한 상황으로 이를 실현 할 수 있는 물질가운데, 탄소나노 재료중의 하나인 그래핀과 그래핀 하이브리드와 같은 뛰어난 전기화학적 특성을 지니고 있는 나노 재료가 각광을 받고 있다. 또한 슈퍼커패시터와 배터리 및 연료전지 등과 같은 에너지 저장 소자에 응용하기 위한 연구가 활발하게 진행 중에 있으며, 여러 가지 에너지 저장 매체 중 단시간에 고출력을 구현하고 장시간 신뢰성을 갖추며, 빠른 충 방전 순환특성을 가지는 슈퍼커패시터는 차세대 에너지원으로 많은 관심을 받고 있다. 본 연구에서는 플렉시블한 특성을 갖는 그래핀과 전도성 고분자 하이브리드 전극을 기반으로 하는 슈퍼커패시터를 개발하고자 하였으며 환원된 그래핀 옥사이드/폴리피롤 복합재료를 이용하여, 전기화학적 특성을 최대화 하였다. 그 결과 굽힘 시험 전 전극의 초기 용량값은 $198.5F\;g^{-1}$ 이었으며, 500번의 굽힘 시험 후 $128.3F\;g^{-1}$로 감소하는 것을 확인하였으나, 전극의 초기 전기 용량 값의 65 %의 성능을 유지하였다.

Nanocarbon base materials such as, graphene and graphene hybrid with high electrochemical performances have great deal of attention to investigate flexible, stretchable display and wearable electronics in order to develop portable and high efficient energy storage devices. Battery, fuel cell and supercapacitor are able to achieve those properties for flexible, stretchable and wearable electronics, especially the supercapacitor is a promise energy storage device due to their remarkable properties including high power and energy density, environment friendly, fast charge-discharge and high stability. In this study, we have fabricated flexible supercapacitor composed of graphene/conductive polymer composite which could improve its electrochemical performance. As a result, specific capacitance value of the flexible supercapacitor (unbent) was $198.5F\;g^{-1}$ which decreased to $128.3F\;g^{-1}$ (65% retention) after $500^{th}$ bending cycle.

키워드

참고문헌

  1. C. Warwar and M. S. Silverstein, Ball of string. Materials Today, 16(7), 297 (2013). https://doi.org/10.1016/j.mattod.2013.07.006
  2. D.-H. Kim, R. Ghaffari, N. Lu, J.A. Rogers, Flexible and stretchable electronics for biointegrated devices, Annual review of biomedical engineering, 14, 113 (2012). https://doi.org/10.1146/annurev-bioeng-071811-150018
  3. R.C. Webb, A.P. Bonifas, A. Behnaz, Y. Zhang, K.J. Yu, H. Cheng, M. Shi, Z. Bian, Z. Liu, Y.-S. Kim, Ultrathin conformal devices for precise and continuous thermal characterization of human skin, Nat. Mater, 12, 938 (2013). https://doi.org/10.1038/nmat3755
  4. C. Wang, G.G. Wallace, Flexible Electrodes and Electrolytes for Energy Storage, Electrochim. Acta, 175, 87 (2015). https://doi.org/10.1016/j.electacta.2015.04.067
  5. A. Chandra, Ion conduction in crystalline superionic solids and its applications, Eur. Phys. J. Appl. Phys, 66, 30905 (2014). https://doi.org/10.1051/epjap/2014130569
  6. K.-T. Lee, N.-L. Wu, Manganese oxide electrochemical capacitor with potassium poly (acrylate) hydrogel electrolyte, J. Power Sources, 179, 430 (2008). https://doi.org/10.1016/j.jpowsour.2007.12.057
  7. N. Choudhury, S. Sampath, A. Shukla, Hydrogel-polymer electrolytes for electrochemical capacitors: an overview, Energy & Environmental Science, 2, 55 (2009). https://doi.org/10.1039/B811217G
  8. S.R. Prabaharan, R. Vimala, Z. Zainal, Nanostructured mesoporous carbon as electrodes for supercapacitors, J. Power Sources, 161, 730 (2006). https://doi.org/10.1016/j.jpowsour.2006.03.074
  9. A.S. Shaplov, R. Marcilla, D. Mecerreyes, Recent Advances in Innovative Polymer Electrolytes based on Poly(ionic liquid)s, Electrochim. Acta, 175, 18 (2015). https://doi.org/10.1016/j.electacta.2015.03.038
  10. L. Yunze, L. Jianlin, X. Jie, C. Zhaojia, Z. Lijuan, L. Junchao, W. Meixiang, Specific heat and magnetic susceptibility of polyaniline nanotubes: inhomogeneous disorder, Journal of Physics: Condensed Matter, 16, 1123 (2004). https://doi.org/10.1088/0953-8984/16/7/012
  11. Y. Liao, C. Sun, S. Hu, W. Li, Anti-thermal shrinkage nanoparticles/ polymer and ionic liquid based gel polymer electrolyte for lithium ion battery, Electrochim. Acta, 89, 461 (2013). https://doi.org/10.1016/j.electacta.2012.11.095
  12. L. Yunze, C. Zhaojia, S. Jiaoyan, Z. Zhiming, Z. Lijuan, H. Kun, W. Meixiang, J. Aizi, G. Changzhi, D. Jean Luc, Magnetoresistance studies of polymer nanotube/wire pellets and single polymer nanotubes/wires, Nanotechnology, 17, 5903 (2006). https://doi.org/10.1088/0957-4484/17/24/001
  13. A. Nishimoto, M. Watanabe, Y. Ikeda, S. Kohjiya, High ionic conductivity of new polymer electrolytes based on high molecular weight polyether comb polymers, Electrochim. Acta, 43, 1177 (1998). https://doi.org/10.1016/S0013-4686(97)10017-2
  14. A. Lewandowski, A. Swiderska, New composite solid electrolytes based on a polymer and ionic liquids, Solid State Ionics, 169, 21 (2004). https://doi.org/10.1016/j.ssi.2003.02.004
  15. X. Yan, X. Zhang, H. Liu, Y. Liu, J. Ding, Y. Liu, Q. Cai, J. Zhang, Fabrication of SDBS intercalated-reduced graphene oxide/polypyrrole nanocomposites for supercapacitors, Synthetic Metals, 196, 1 (2014). https://doi.org/10.1016/j.synthmet.2014.06.025
  16. A. Balducci, F. Soavi, M. Mastragostino, The use of ionic liquids as solvent-free green electrolytes for hybrid supercapacitors, Appl Phys A, 82, 627 (2006).
  17. Y.J. Kang, H. Chung, C.-H. Han, W. Kim, All-solid-state flexible supercapacitors based on papers coated with carbon nanotubes and ionic-liquidbased gel electrolytes, Nanotechnology, 23, 065401 (2012). https://doi.org/10.1088/0957-4484/23/6/065401
  18. C.-W. Liew, S. Ramesh, A. Arof, Investigation of ionic liquid-doped ion conducting polymer electrolytes for carbon-based electric double layer capacitors (EDLCs), Materials & Design, 92, 829 (2016). https://doi.org/10.1016/j.matdes.2015.12.115
  19. G. Hirankumar, S. Selvasekarapandian, M.S. Bhuvaneswari, R. Baskaran, M. Vijayakumar, AC impedance studies on proton conducting polymer electrolyte complexes (PVA+CH3COONH4), Ionics, 10, 135 (2004). https://doi.org/10.1007/BF02410322
  20. N. Kurra, S. Kiruthika, G.U. Kulkarni, Solution processed sun baked electrode material for flexible supercapacitors, RSC Advances, 4, 20281 (2014). https://doi.org/10.1039/C4RA02934H