DOI QR코드

DOI QR Code

Kinetics of esterification of food waste oil by solid acid catalyst and reaction optimization

고체 산 촉매를 이용한 고산가 음폐유의 에스테르화 반응 동역학 연구 및 반응 최적화

  • Lee, Hwa-Sung (Department of New and Renewable Energy, Korea Institute of Energy Research) ;
  • Lee, Joon-Pyo (Department of New and Renewable Energy, Korea Institute of Energy Research) ;
  • Lee, Jin-Suk (Department of New and Renewable Energy, Korea Institute of Energy Research) ;
  • Kim, Deog-Keun (Department of New and Renewable Energy, Korea Institute of Energy Research)
  • 이화성 (한국에너지기술연구원 바이오자원순환연구실) ;
  • 이준표 (한국에너지기술연구원 바이오자원순환연구실) ;
  • 이진석 (한국에너지기술연구원 바이오자원순환연구실) ;
  • 김덕근 (한국에너지기술연구원 바이오자원순환연구실)
  • Received : 2017.08.20
  • Accepted : 2017.09.12
  • Published : 2017.09.30

Abstract

Transport biofuels have been recognized as a promising means to resolve the following issues like global warming, oil depletion and environmental pollutions. Among various biofuels, biodiesel has several advantages such as less emission of air pollutants and higher cetane values compared to diesel oil. Demand for biodiesel in Korea is increasing that leads to higher dependence on the imported feedstocks. Therefore, it is important to utilize the waste materials collected domestically for biodiesel production. Food waste oil collected in waste treatment facility has not been used for biodiesel production due to high free fatty contents in the oil. In this work, biodiesel conversion of food waste oil by Amberlyst 15 was studied. Synthetic and actual food waste oils have been used in the study. First, the effects of the major operating parameters including reaction temperature, methanol to oil molar ratio and catalyst loading on the conversion rates and yields were determined with synthetic waste oil. Kinetic modelling work was also done to determine the activation energy of the reaction. From the work, optimization reaction conditions were determined to be 383K, 1: 26.1 for methanol molar ratio to oil, 10 wt.% for catalyst loading and 360 min for reaction time. Activation energy of the reaction is determined to be 29.75 kJ/mol, lower than those reported in the previous works. So the solid catalyst, Amberlyst 15, was more efficient for esterification than the solid catalysts employed in the other works. Agitation rates have the negligible effects on the conversion rates and yields. With the identified optimization conditions, conversion of the actual food waste oil was also carried out. The esterification yield of actual food waste oil in 60 min was 13% lower than that of synthetic waste oil but the final yields in 240 min were similar each other, 98.12% for synthetic oil and 97.62% for actual waste oil.

지구 온난화, 석유 고갈, 환경 오염에 대한 방안으로 수송부문에서 국제적으로 바이오연료에 관한 연구가 활발하게 이루어지고 있다. 그 중 바이오디젤은 이산화탄소 감소 효과와 인체에 무해하며 세탄가가 높아 석유디젤을 대체할 수 있는 장점을 가지고 있다. 현재 국내 바이오디젤 수요는 지속적으로 증가하고 있으나 원료부족으로 인해 수입의존도가 커지고 있는 상황이다. 이러한 문제를 해결하기 위해 본 연구는 현재 사용되지 않는 음폐유(약 33 % 유리지방산 함유)를 Amberlyst-15촉매를 이용한 에스테르화 반응을 통해 바이오디젤 원료로서 활용가능성을 확인 하였다. 다양한 반응 조건의 영향을 조사하기 위한 실험을 수행한 결과 반응온도 383 K에서 97.62 %의 전환율을 얻었으며, 반응속도는 353 K에서 373 K로 증가 할 때 최대 1.99 배까지 상승하였다. 또한 동역학적 결과를 이용하여 29.75 kJ/mol의 활성화 에너지를 확인하여 선행연구에서 연구된 타 고체촉매에 비해 에스테르화반응에 Amberlyst-15 더 적합함을 확인하였다. 그리고 메탄올 몰 비가 증가함에 따라 최대 91.43 %의 반응 전환율을 확인하였고, 촉매량 영향의 경우 0 wt%에서 20 wt%까지 증가시킨 결과 반응 전환율이 43.78 %에서 94.62 %까지, 초기 반응 속도는 1.1~1.4 배로 상승하는 것을 확인하였다. 교반속도의 경우 100~900 rpm의 조건에 따라 실험을 수행하였으나 반응 전환율에는 큰 영향을 주지 않음을 확인하였고 반응 시간에 따른 영향의 경우 240 분 까지 산가 감소를 보이다가 300 분이 지나면서부터 산가가 상승하는 결과를 가져왔다. 그리고 위 실험들을 통해 도출된 최적 조건을 적용하여 음폐유 에스테르화 반응에 적용하였고 그 결과 반응시간 60 분에서 음폐유와 모사 폐유지간의 13 %의 반응 전환율 차이를 보였으나 최종 240 분 반응 전환율은 모사 폐유지 98.12 %, 음폐유는 97.62 %로 거의 유사한 결과를 얻었다.

Keywords

References

  1. H. H. Mardhiah, H. C. Ong, H. H. Masjuki, S. Lim, H. V. Lee, "A review on latest developments and future prospects of heterogeneous catalyst in biodiesel production from non-edible oils", Renewable and Sustainable Energy Reviews, 67, 1225(2017). https://doi.org/10.1016/j.rser.2016.09.036
  2. J. Y. Park, D. K. Kim, J. P. Lee, S. C. Park, Y. J. Kim, J. S. Lee, "Blending effects of biodiesels on oxidation stability and low temperature flow properties", Bioresource Technology, 99, 1196(2008) https://doi.org/10.1016/j.biortech.2007.02.017
  3. J. Connemann, J. Fischer, "Biodiesel in Europe 1998," paper presented at Int. Liquid Biofuels Congress, Curitiba, Bra-sil(1998).
  4. J. D. Choi, D. K. Kim, J. Y. Park, Y. W. Rhee, J. S. Lee, "Optimization of Esterification of Jatropha Oil by Amberlyst-15 and Biodiesel production" Korean Cham. Eng. Res, 46, 194(2008).
  5. B. K. Barnwal, M. P. Sharma, "Prospects of biodiesel production from vegetable oils in India", Renewable and Sustainable Energy Reviews, 9, 363(2005). https://doi.org/10.1016/j.rser.2004.05.007
  6. M. Veillette, A. Giroir-Fendler, N. Faucheux, M. Heitz, "Esterification of free fatty acids with methanol to biodiesel using heterogeneous catalysts: From model acid oil to microalgae lipids", Chemical Engineering Journal, 308, 101(2017). https://doi.org/10.1016/j.cej.2016.07.061
  7. M. Maghami, S. M. Sadrameli, B. Ghobadian, "Production of biodiesel from fishmeal plant waste oil using ultrasonic and conventional methods", Applied Thermal Engineering, 75, 575(2015). https://doi.org/10.1016/j.applthermaleng.2014.09.062
  8. A. S. Ramadhas, S. Jayaraj, C. Muraleedharan, "Biodiesel production from high FFA rubber seed oil" Fuel, 84, 335(2005). https://doi.org/10.1016/j.fuel.2004.09.016
  9. D. K. Kim, J. D. Choi, J. Y. Park, J. S. Lee, S. B. Park, S. C. Park, "Optimization of Pre-treatment of Tropical Crop Oil by Sulfuric Acid and Bio-diesel Production" Korean Cham. Eng. Res, 47, 762(2009).
  10. L. Chen, T. Liu, W. Zhang, X. Chen, J. Wang, "Biodiesel production from algae oil high in free fatty acids by two-step catalytic conversion" Bioresource Technology. 111, 208(2012). https://doi.org/10.1016/j.biortech.2012.02.033
  11. Q. Shu, J. Gao, Z. Nawaz, Y. Liao, D. Wang, J. Wang, "Synthesis of biodiesel from waste vegetable oil with large amounts of free fatty acids using a carbon-based solid acid catalyst" Applied Energy, 87, 2589(2010). https://doi.org/10.1016/j.apenergy.2010.03.024
  12. J. S. Lee, S. Saka, "Biodiesel production by heterogeneous catalysts and supercritical technologies" Bioresource Technology, 101, 7191(2010). https://doi.org/10.1016/j.biortech.2010.04.071
  13. M. F. Lee, H. T. Wu, H. M. Lin, "Kinetics of Catalytic Esterification of Acetic Acid and Amyl Alcohol over Dowex" Ind, Eng, Chem, Res, 39, 4094(2000). https://doi.org/10.1021/ie0000764
  14. J. Gangadwala, S. Mankar, "Esterification of Acetic Acid with Butanol in the Presence of Ion-Exchange Resins as Catalysts" Ind, Eng, Chem, Res, 42, 2146(2003). https://doi.org/10.1021/ie0204989
  15. T. Sano, N. Yamaguchi, T. Adachi, "Mass transfer coefficients for suspended particles in agitated vessels and bubble columns" J. Chem. Eng. Jpn, 7, 255(1974). https://doi.org/10.1252/jcej.7.255
  16. Y. J. Kim, D. K. Kim, Y. W. Rhee, S. C. Park, J. S. Lee, "A Kinetic Study on the Esterification of Oleic Acid with Methanol in the Presence of Amberlyst-15 " Korean Cham. Eng. Res, 43, 621(2005)
  17. M. Kuzminska, R. Backov, E. M. Gaigneaux, "Behavior of cation-exchange resins employed as heterogeneous catalysts for esterification of oleic acid with trimethylolpropane", Applied Catalysis A: General, 504, 11(2015). https://doi.org/10.1016/j.apcata.2014.12.043
  18. Sigma-Aldrich , "Amberlyst(R) 15 hydrogen form", (2017) from: http://www.sigmaaldrich.com/catalog/product/aldrich/216399?lang=ko&ion=KR, (accessed May, 18, 2017)
  19. S. H. Jeon , "Glycerin, fatty acid, soap made from natural oils", (2012) from: http://cosnet.co.kr/board_view.php?idx=3&boardIndex=1&data=idx%3D3, (accessed May, 18, 2017)
  20. B. Chinmoy, K. D. Ajay, 'Esterification of free fatty acids (FFA) of Green Seed Canola (GSC) oil using H-Y zeolite supported 12-Tungstophosphoric acid (TPA)', Appl. Catal. A. Gen., 485, 99-107(2014) https://doi.org/10.1016/j.apcata.2014.07.033