References
- J. Welzel, “Optical Coherence Tomography in Dermatology : A Review,” Skin Research and Technology, Vol. 7, No. 1, pp. 1-9, 2001. https://doi.org/10.1034/j.1600-0846.2001.007001001.x
- S.J. Chiu, J.A. Izatt, R.V. O'Connell, K.P. Winter, C.A. Toth, and S. Farsiu, "Validated Automatic Segmentation of AMD Pathology Including Drusen and Geographic Atrophy in SD-OCT Images," Investigative Ophthalmology and Visual Science, Vol. 53, No. 1, pp. 53-61, 2012. https://doi.org/10.1167/iovs.11-7640
- G. Lemaitre, M. Rastgoo, J. Massich, C.Y. Cheung, Y. Wong, E. Lamoureux, et al., "Classification of SD-OCT Volumes Using Local Binary Patterns: Experimental Validation for DME Detection," Journal of Ophthalmology, Vol. 6, pp. 1-16, 2016.
- Y. Liu, M. Chen, H. Ishikawa, G. Wollstein, J.S. Schuman, and J.M. Rehg, "Automated Macular Pathology Diagnosis in Retinal OCT Images Using Multi-scale Spatial Pyramid with Local Binary Patterns," Proceeding of Medical Image Computing and Computer-Assisted Intervention, pp. 1-9, 2010.
- S. Lim and D.Y. Kim, "Object Tracking Using Feature Map from Convolutional Neural Network," Journal of Korea Multimedia Society, Vol. 20, No. 2, pp. 126-13, 2017. https://doi.org/10.9717/kmms.2017.20.2.126
- A. Krizhevsky, I. Sutskever, and G.E. Hinton, "ImageNet: Classification with Deep Convolutional Neural Networks," Proceeding of the 25th International Conference on Neural Information Processing Systems, pp. 1097-1105, 2012.
- J.T. Lee, H. Kang, and K. Lim, "Moving Shadow Detection Using Deep Learning and Markov Random Field," Journal of Korea Multimedia Society, Vol. 18, No. 12, pp. 1432-1438, 2015. https://doi.org/10.9717/kmms.2015.18.12.1432
- M.D. Abramoff, Y. Lou, and A. Erginay, “Improved Automated Detection of Diabetic Retinopathy on a Publicly Available Dataset Through Integration of Deep Learning,” Investigative Ophthalmology and Visual Science, Vol. 57, No. 13, pp. 5200-5206, 2016. https://doi.org/10.1167/iovs.16-19964
- R. Asaoka, H. Murata, A. Iwase, and M. Araie, “Detecting Preperimetric Glaucoma with Standard Automated Primetry Using a Deep Learning Classifier,” Ophthalmology, Vol. 123, No. 9, pp. 1974-1980, 2016. https://doi.org/10.1016/j.ophtha.2016.05.029
- S. Apostolopoulos, C. Ciller, S. De Zanet, S. Wolf, and R. Sznitman, "RetiNet: Automatic AMD Identification in OCT Volumetric Data," arXiv:1610.03628, 2016.
- T. Schlegl, S.M. Waldstein, U.M. Schmidt-Erfurth, and G. Langs, "Predicting Semantic Descriptions from Medical Images with Convolutional Neural Networks," Information Processing in Medical Imaging, Vol. 24, pp. 437-448, 2015.
- S. Cecilia, M.D. Lee, D.M. Baughman, and Y. Aaron, "Deep Learning is Effective for Classifying Normal Versus Age-related Macular Degeneration Optical Coherence Tomography Images," arXiv:1612.04891, 2016.
- K. Simonyan and A. Zisserman, "Very Deep Convolutional Networks for Large-scale Image Recognition," arXiv:1409.1556, 2014.
- S. Farsiu, S.J. Chiu, R.V. O'Connell, F.A. Folgar, E. Yuan, J.A. Izatt, et al., "Quantitative Classification of Eyes with and without Intermediate Age-related Macular Degeneration Using Optical Coherence Tomography," Ophthalmology, Vol. 121, No. 1, pp. 162-172, 2014. https://doi.org/10.1016/j.ophtha.2013.07.013