DOI QR코드

DOI QR Code

Effect of FGF-2, TGF-β-1, and BMPs on Teno/Ligamentogenesis and Osteo/Cementogenesis of Human Periodontal Ligament Stem Cells

  • Hyun, Sun-Yi (Department of Nanobiomedical Science and BK21 PLUS Global Research Center for Regenerative Medicine, Dankook University) ;
  • Lee, Ji-Hye (Department of Nanobiomedical Science and BK21 PLUS Global Research Center for Regenerative Medicine, Dankook University) ;
  • Kang, Kyung-Jung (Department of Nanobiomedical Science and BK21 PLUS Global Research Center for Regenerative Medicine, Dankook University) ;
  • Jang, Young-Joo (Department of Nanobiomedical Science and BK21 PLUS Global Research Center for Regenerative Medicine, Dankook University)
  • 투고 : 2017.02.08
  • 심사 : 2017.07.11
  • 발행 : 2017.08.31

초록

The periodontal ligament (PDL) is the connective tissue between tooth root and alveolar bone containing mesenchymal stem cells (MSC). It has been suggested that human periodontal ligament stem cells (hPDLSCs) differentiate into osteo/cementoblast and ligament progenitor cells. The periodontitis is a representative oral disease where the PDL tissue is collapsed, and regeneration of this tissue is important in periodontitis therapy. Fibroblast growth factor-2 (FGF-2) stimulates proliferation and differentiation of fibroblastic MSCs into various cell lineages. We evaluated the dose efficacy of FGF-2 for cytodifferentiation of hPDLSCs into ligament progenitor. The fibrous morphology was highly stimulated even at low FGF-2 concentrations, and the expression of teno/ligamentogenic markers, scleraxis and tenomodulin in hPDLSCs increased in a dose dependent manner of FGF-2. In contrast, expression of the osteo/cementogenic markers decreased, suggesting that FGF-2 might induce and maintain the ligamentogenic potential of hPDLSCs. Although the stimulation of tenocytic maturation by $TGF-{\beta}1$ was diminished by FGF-2, the inhibition of the expression of early ligamentogenic marker by $TGF-{\beta}1$ was redeemed by FGF-2 treatment. The stimulating effect of BMPs on osteo/cementogenesis was apparently suppressed by FGF-2. These results indicate that FGF-2 predominantly differentiates the hPDLSCs into teno/ligamentogenesis, and has an antagonistic effect on the hard tissue differentiation induced by BMP-2 and BMP-4.

키워드

참고문헌

  1. Asano, M., Kubota, S., Nakanishi, T., Nishida, T., Yamaai, T., Yosimichi, G., Ohyama, K., Sugimoto, T., Murayama, Y., and Takigawa, M. (2005). Effect of connective tissue growth factor (CCN2/CTGF) on proliferation and differentiation of mouse periodontal ligament-derived cells. Cell Commun. Signal. 3, 11. https://doi.org/10.1186/1478-811X-3-11
  2. Beertsen, W., McCulloch, C.A., and Sodek, J. (1997). The periodontal ligament: a unique, multifunctional connective tissue. Periodontology 2000 13, 20-40. https://doi.org/10.1111/j.1600-0757.1997.tb00094.x
  3. Bradfute, S.B., Graubert, T.A., and Goodell, M.A. (2005). Roles of Sca-1 in hematopoietic stem/progenitor cell function. Exp. Hematol. 33, 836-843. https://doi.org/10.1016/j.exphem.2005.04.001
  4. Choi, J.K., Hwang, H.I., and Jang, Y.J. (2015). The efficiency of the in vitro osteo/dentinogenic differentiation of human dental pulp cells, periodontal ligament cells and gingival fibroblasts. Int. J. Mol. Med. 35, 161-168. https://doi.org/10.3892/ijmm.2014.1986
  5. Dangaria, S.J., Ito, Y., Walker, C., Druzinsky, R., Luan, X., and Diekwisch, T.G. (2009). Extracellular matrix-mediated differentiation of periodontal progenitor cells. Differentiation 78, 79-90. https://doi.org/10.1016/j.diff.2009.03.005
  6. de Gorter, D.J., van Dinther, M., Korchynskyi, O., and ten Dijke, P. (2011). Biphasic effects of transforming growth factor beta on bone morphogenetic protein-induced osteoblast differentiation. J. Bone Miner. Res. 26, 1178-1187. https://doi.org/10.1002/jbmr.313
  7. Francis, P.H., Richardson, M.K., Brickell, P.M., and Tickle, C. (1994). Bone morphogenetic proteins and a signalling pathway that controls patterning in the developing chick limb. Development 120, 209-218.
  8. Fujii, S., Maeda, H., Tomokiyo, A., Monnouchi, S., Hori, K., Wada, N., and Akamine, A. (2010). Effects of TGF-beta1 on the proliferation and differentiation of human periodontal ligament cells and a human periodontal ligament stem/progenitor cell line. Cell Tissue Res. 342, 233-242. https://doi.org/10.1007/s00441-010-1037-x
  9. Itaya, T., Kagami, H., Okada, K., Yamawaki, A., Narita, Y., Inoue, M., Sumita, Y., and Ueda, M. (2009). Characteristic changes of periodontal ligament-derived cells during passage. J. Periodontal. Res. 44, 425-433. https://doi.org/10.1111/j.1600-0765.2008.01137.x
  10. Kao, R.T., Murakami, S., and Beirne, O.R. (2009). The use of biologic mediators and tissue engineering in dentistry. Periodontology 2000 50, 127-153. https://doi.org/10.1111/j.1600-0757.2008.00287.x
  11. Kawahara, T., Yamashita, M., Ikegami, K., Nakamura, T., Yanagita, M., Yamada, S., Kitamura, M., and Murakami, S. (2015). TGF-$\beta$ negatively regulates the BMP2-dependent early commitment of periodontal ligament cells into hard tissue forming cells. PloS one 10, e0125590. https://doi.org/10.1371/journal.pone.0125590
  12. Lai, W.T., Krishnappa, V., and Phinney, D.G. (2011). Fibroblast growth factor 2 (Fgf2) inhibits differentiation of mesenchymal stem cells by inducing Twist2 and Spry4, blocking extracellular regulated kinase activation, and altering Fgf receptor expression levels. Stem Cells 29, 1102-1111. https://doi.org/10.1002/stem.661
  13. Lee, T.H., Kim, W.T., Ryu, C.J., and Jang, Y.J. (2015). Optimization of treatment with recombinant FGF-2 for proliferation and differentiation of human dental stem cells, mesenchymal stem cells, and osteoblasts. Biochem. Cell Biol. 93, 298-305. https://doi.org/10.1139/bcb-2014-0140
  14. Lekic, P., and McCulloch, C.A. (1996). Periodontal ligament cell population: the central role of fibroblasts in creating a unique tissue. Anat. Rec. 245, 327-341. https://doi.org/10.1002/(SICI)1097-0185(199606)245:2<327::AID-AR15>3.0.CO;2-R
  15. Lorda-Diez, C.I., Montero, J.A., Martinez-Cue, C., Garcia-Porrero, J.A., and Hurle, J.M. (2009). Transforming growth factors beta coordinate cartilage and tendon differentiation in the developing limb mesenchyme. J. Biol. Chem. 284, 29988-29996. https://doi.org/10.1074/jbc.M109.014811
  16. Maeda, H., Tomokiyo, A., Fujii, S., Wada, N., and Akamine, A. (2011). Promise of periodontal ligament stem cells in regeneration of periodontium. Stem Cell Res. Ther. 2, 33. https://doi.org/10.1186/scrt74
  17. Neubauer, M., Fischbach, C., Bauer-Kreisel, P., Lieb, E., Hacker, M., Tessmar, J., Schulz, M.B., Goepferich, A., and Blunk, T. (2004). Basic fibroblast growth factor enhances PPARgamma ligand-induced adipogenesis of mesenchymal stem cells. FEBS Lett. 577, 277-283. https://doi.org/10.1016/j.febslet.2004.10.020
  18. Olson, E.N., and Capetanaki, Y.G. (1989). Developmental regulation of intermediate filament and actin mRNAs during myogenesis is disrupted by oncogenic ras genes. Oncogene 4, 907-913.
  19. Seo, B.M., Miura, M., Gronthos, S., Bartold, P.M., Batouli, S., Brahim, J., Young, M., Robey, P.G., Wang, C.Y., and Shi, S. (2004). Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet 364, 149-155. https://doi.org/10.1016/S0140-6736(04)16627-0
  20. Shi, Y., and Massague, J. (2003). Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 113, 685-700. https://doi.org/10.1016/S0092-8674(03)00432-X
  21. Shimabukuro, Y., Terashima, H., Takedachi, M., Maeda, K., Nakamura, T., Sawada, K., Kobashi, M., Awata, T., Oohara, H., Kawahara, T., et al. (2011). Fibroblast growth factor-2 stimulates directed migration of periodontal ligament cells via PI3K/AKT signaling and CD44/hyaluronan interaction. J. Cell. Physiol. 226, 809-821. https://doi.org/10.1002/jcp.22406
  22. Solchaga, L.A., Penick, K., Porter, J.D., Goldberg, V.M., Caplan, A.I., and Welter, J.F. (2005). FGF-2 enhances the mitotic and chondrogenic potentials of human adult bone marrow-derived mesenchymal stem cells. J. Cell. Physiol. 203, 398-409. https://doi.org/10.1002/jcp.20238
  23. Sugimoto, Y., Takimoto, A., Akiyama, H., Kist, R., Scherer, G., Nakamura, T., Hiraki, Y., and Shukunami, C. (2013). Scx+/Sox9+ progenitors contribute to the establishment of the junction between cartilage and tendon/ligament. Development 140, 2280-2288. https://doi.org/10.1242/dev.096354
  24. Terranova, V.P. (1993). Biologically active factors in the treatment of periodontal disease. Curr. Opin. Periodontol. 1993, 129-135.
  25. Urist, M.R. (1965). Bone: formation by autoinduction. Science 150, 893-899. https://doi.org/10.1126/science.150.3698.893
  26. Vainio, S., Karavanova, I., Jowett, A., and Thesleff, I. (1993). Identification of BMP-4 as a signal mediating secondary induction between epithelial and mesenchymal tissues during early tooth development. Cell 75, 45-58. https://doi.org/10.1016/S0092-8674(05)80083-2
  27. Wikesjo, U.M., Razi, S.S., Sigurdsson, T.J., Tatakis, D.N., Lee, M.B., Ongpipattanakul, B., Nguyen, T., and Hardwick, R. (1998). Periodontal repair in dogs: effect of recombinant human transforming growth factor-beta1 on guided tissue regeneration. J. Clin. Periodontol. 25, 475-481. https://doi.org/10.1111/j.1600-051X.1998.tb02476.x
  28. Yanagita, M., Kojima, Y., Kubota, M., Mori, K., Yamashita, M., Yamada, S., Kitamura, M., and Murakami, S. (2014). Cooperative effects of FGF-2 and VEGF-A in periodontal ligament cells. J. Dent. Res. 93, 89-95. https://doi.org/10.1177/0022034513511640
  29. Yu, P.J., Ferrari, G., Galloway, A.C., Mignatti, P., and Pintucci, G. (2007). Basic fibroblast growth factor (FGF-2): the high molecular weight forms come of age. J. Cell. Biochem. 100, 1100-1108. https://doi.org/10.1002/jcb.21116

피인용 문헌

  1. Effect of GARP on osteogenic differentiation of bone marrow mesenchymal stem cells via the regulation of TGFβ1 in vitro vol.7, pp.None, 2019, https://doi.org/10.7717/peerj.6993
  2. Effect of autogenous growth factors released from platelet concentrates on the osteogenic differentiation of periodontal ligament fibroblasts: a comparative study vol.7, pp.None, 2019, https://doi.org/10.7717/peerj.7984
  3. Gene expression profiling of Jagged1‐treated human periodontal ligament cells vol.25, pp.4, 2019, https://doi.org/10.1111/odi.13065
  4. M2 Macrophages Enhance the Cementoblastic Differentiation of Periodontal Ligament Stem Cells via the Akt and JNK Pathways vol.37, pp.12, 2019, https://doi.org/10.1002/stem.3076
  5. Evaluation of the effect of CaD on the bone structure and bone metabolic changes in senile osteoporosis rats based on MLP-ANN methods vol.10, pp.12, 2017, https://doi.org/10.1039/c9fo01322a
  6. The composite sandwich structure of dNCPs polyelectrolyte multilayers induced the osteogenic differentiation of PDLSCs in vitro vol.18, pp.None, 2017, https://doi.org/10.1177/2280800020942719
  7. Chemical Optimization for Functional Ligament Tissue Engineering vol.26, pp.1, 2020, https://doi.org/10.1089/ten.tea.2019.0142
  8. The Role of Type 2 Fibroblast Growth Factor in Periodontal Therapy vol.21, pp.None, 2017, https://doi.org/10.2174/1389450121999201105152639
  9. Enhanced tenogenic differentiation and tendon-like tissue formation by Scleraxis overexpression in human amniotic mesenchymal stem cells vol.51, pp.3, 2017, https://doi.org/10.1007/s10735-020-09873-w
  10. Tooth Formation: Are the Hardest Tissues of Human Body Hard to Regenerate? vol.21, pp.11, 2020, https://doi.org/10.3390/ijms21114031
  11. Human hair follicle-derived mesenchymal stem cells: Isolation, expansion, and differentiation vol.12, pp.6, 2017, https://doi.org/10.4252/wjsc.v12.i6.462
  12. Sulfonated chitosan oligosaccharide alleviates the inhibitory effect of basic fibroblast growth factor on osteogenic differentiation of human periodontal ligament stem cells vol.91, pp.7, 2017, https://doi.org/10.1002/jper.19-0273
  13. Fibroblast growth factor-2 ameliorates tumor necrosis factor-alpha-induced osteogenic damage of human bone mesenchymal stem cells by improving oxidative phosphorylation vol.52, pp.None, 2020, https://doi.org/10.1016/j.mcp.2020.101538
  14. Poly lactic‐co‐glycolic acid scaffold loaded with plasmid DNA encoding fibroblast growth factor‐2 promotes periodontal ligament regeneration of replanted teeth vol.55, pp.4, 2020, https://doi.org/10.1111/jre.12734
  15. Three-dimensional periodontal tissue regeneration using a bone-ligament complex cell sheet vol.10, pp.None, 2017, https://doi.org/10.1038/s41598-020-58222-0
  16. Activation of β‐catenin by TGF ‐β1 promotes ligament‐fibroblastic differentiation and inhibits cementoblastic differentiation of human periodontal ligamen vol.38, pp.12, 2017, https://doi.org/10.1002/stem.3275
  17. Key Markers and Epigenetic Modifications of Dental-Derived Mesenchymal Stromal Cells vol.2021, pp.None, 2017, https://doi.org/10.1155/2021/5521715
  18. Development and maintenance of tendons and ligaments vol.148, pp.8, 2021, https://doi.org/10.1242/dev.186916
  19. LPCGF and EDTA conditioning of the root surface promotes the adhesion, growth, migration and differentiation of periodontal ligament cells vol.92, pp.5, 2017, https://doi.org/10.1002/jper.20-0103
  20. Sinking Our Teeth in Getting Dental Stem Cells to Clinics for Bone Regeneration vol.22, pp.12, 2017, https://doi.org/10.3390/ijms22126387
  21. Increasing Odontoblast-like Differentiation from Dental Pulp Stem Cells through Increase of β-Catenin/p-GSK-3β Expression by Low-Frequency Electromagnetic Field vol.9, pp.8, 2017, https://doi.org/10.3390/biomedicines9081049
  22. Elements of 3D Bioprinting in Periodontal Regeneration: Frontiers and Prospects vol.9, pp.10, 2021, https://doi.org/10.3390/pr9101724
  23. Human periodontal ligament stem cells and hormesis: Enhancing cell renewal and cell differentiation vol.173, pp.None, 2017, https://doi.org/10.1016/j.phrs.2021.105914
  24. Individualized plasticity autograft mimic with efficient bioactivity inducing osteogenesis vol.13, pp.1, 2017, https://doi.org/10.1038/s41368-021-00120-w
  25. Strategies to improve regenerative potential of mesenchymal stem cells vol.13, pp.12, 2021, https://doi.org/10.4252/wjsc.v13.i12.1845