DOI QR코드

DOI QR Code

Enhanced Control Efficacy of a Fumigant, Chlorine Dioxide, by a Mixture Treatment with Carbon Dioxide

이산화탄소 혼합 처리를 통한 이산화염소 훈증 처리 효과 제고 기술

  • Kim, Chulyoung (Department of Plant Medicals, Andong National University) ;
  • Kwon, Hyeok (Department of Life Sciences and Biotechnology, Korea University) ;
  • Kim, Wook (Department of Life Sciences and Biotechnology, Korea University) ;
  • Kim, Yonggyun (Department of Plant Medicals, Andong National University)
  • 김철영 (안동대학교 식물의학과) ;
  • 권혁 (고려대학교 생명공학부) ;
  • 김욱 (고려대학교 생명공학부) ;
  • 김용균 (안동대학교 식물의학과)
  • Received : 2017.05.13
  • Accepted : 2017.06.15
  • Published : 2017.09.01

Abstract

Fumigation using chlorine dioxide ($ClO_2$) has been regarded as a potential control technique against stored grain insect pests. The control efficacy can be enhanced with increase of opening rates of spiracles by facilitating the toxic gas delivery to internal body. To test this hypothesis, this study used the Indianmeal moth, Plodia interpunctella, which was known to be susceptible to $ClO_2$, and analyzed the opening rate of spiracles. A total of 9 pairs of spiracles were observed in P. interpunctella larvae, in which one pair was located on the prothorax and eight pairs were on the abdomen. Within the body, the spiracles were connected to longitudinal and transverse tracheal trunks. The open spiracles were determined by the dye-infiltration method. Based on this method, the opening rate of spiracles increased up to about 60% with increase of ambient temperatures. Furthermore, exposure to carbon dioxide stimulated the opening rate of spiracles up to about 95%. In contrast, exposure to $ClO_2$ prevented the spiracle opening and resulted in only 25% of spiracles in an opening state. The addition of carbon dioxide to $ClO_2$ treatment rescued the opening rate of spiracles as much as the carbon dioxide single treatment. Based on this modulatory activity of carbon dioxide against spiracles, the combined treatment of $ClO_2$ with carbon dioxide resulted in significant increase of its toxicity against P. interpunctella compared to a single $ClO_2$ treatment.

이산화염소 훈증 처리는 저곡해충에 대한 방제 가능성을 가지고 있다. 특히 체내로 독성 가스의 침투력을 높이기 위해 기문의 개방화를 유도하면 이 훈증 가스 처리 효과를 증가시킬 수 있다. 이 가설을 증명하기 위해 본 연구는 이산화염소 훈증 처리에 감수성을 보이는 화랑곡나방(Plodia interpunctella)을 대상으로 기문 개방 활동을 분석하였다. 화랑곡나방 유충의 기문은 모두 9쌍으로 앞가슴에 1쌍 그리고 복부에 8쌍을 각각 지니고 있다. 이들은 몸 내부에 가로 및 세로기관지와 연결된 구조를 지녔다. 기문 개방 유무는 염색액 침투 방법으로 판정하였으며 이를 토대로 분석한 결과 주변 온도 증가에 따라 기문 개방화는 약 60% 까지 증가하였다. 특히 이산화탄소에 노출되면 기문개방화는 약 95%까지 증가하였다. 반면에 이산화염소에 노출되면 화랑곡나방 유충의 기문은 대부분 닫혀 기문개방율이 약 25%로 줄었다. 이산화염소 처리에 이산화탄소를 추가한 결과 기문개방율은 이산화탄소 단독 처리만큼 크게 증가하였다. 이를 토대로 두 혼합 가스를 처리하여 살충효과를 분석한 결과 이산화염소 단독 처리에 비해 혼합처리가 현격하게 높은 살충력을 나타냈다.

Keywords

References

  1. Burkett, B.N., Schneiderman, H.A., 1967. Control of spiracles in silk moths by oxygen and carbon dioxide. Science 156, 1604-1606. https://doi.org/10.1126/science.156.3782.1604
  2. Dojchinov, G., Damcevski, K.A., Woodman, J.D., Haritos, V.S., 2010. Field evaluation of vaporised ethyl formate and carbon dioxide for fumigation of stored wheat. Pest Manag. Sci. 66, 417-424.
  3. Forster, T.D., Hetz, S.K., 2010. Spiracle activity in moth pupae-the role of oxygen and carbon dioxide revisited. J. Insect Physiol. 56, 492-501. https://doi.org/10.1016/j.jinsphys.2009.06.003
  4. Gates, D.J., 1998. The Chlorine Dioxide Handbook, American Water Works Association, Denver, CO.
  5. Gibbs, S.G., Lowe, J.J., Smith, P.W., Hewlett, A.L., 2012. Gaseous chlorine dioxide as an alternative for bedbug control. Infect. Control Hosp. Epidemiol. 33, 495-499. https://doi.org/10.1086/665320
  6. Gudowska, A., Boardman, L., Terblanche, J.S., 2016. The closed spiracle phase of discontinuous gas exchange predicts diving duration in the grasshopper Paracinema tricolor. J. Exp. Biol. 219, 2423-2425. https://doi.org/10.1242/jeb.135129
  7. Harrison, J.F., Waters, J.S., Cease, A.J., Vandenbrooks, J.M., Callier, V., Klok, C.J., Shaffer, K., Socha, J.J., 2013. How locusts breathe. Physiology 28, 18-27. https://doi.org/10.1152/physiol.00043.2012
  8. Janmaat, A.F., de Kogel, W.J., Woltering, E.J., 2002. Enhanced fumigant toxicity of p-cymene against Frankliniella occidentalis by simultaneous application of elevated levels of carbon dioxide. Pest. Manag. Sci. 58, 167-173. https://doi.org/10.1002/ps.432
  9. Jung, C., Kwon, K., Kim, Y., 2014. A postharvest control technique of the Oriental fruit moth, Grapholita molesta, infesting apples using CATTS. Korean J. Appl. Entomol. 53, 73-80. https://doi.org/10.5656/KSAE.2014.01.1.069
  10. Kaya, H.K., Gaugler, R., 1993. Entomopathogenic nematodes. Annu. Rev. Entomol. 38, 181-206. https://doi.org/10.1146/annurev.en.38.010193.001145
  11. Kim, C., Kwon, H., Kim, W., Kim, Y., 2017. Inhibitory effect of chlorine dioxide using reactive oxygen species against heart contraction of the Indianmeal moth, Plodia interpunctella. Korean J. Appl. Entomol. 56, 147-152.
  12. Kim, Y., Kumar, S., Cheon, W., Eo, H., Kwon, H., Jeon, Y., Jung, J., Kim, W., 2016. Anticancer and antiviral activity of chlorine dioxide by its induction of the reactive oxygen species. J. Appl. Biol. Chem. 59, 31-36. https://doi.org/10.3839/jabc.2016.007
  13. Kim, Y., Kumar, S., Rahman, M.M., Kwon, H., Chon, Y., Na, J., Kim, W., 2015a. Evasive behavior of the red flour beetle, Tribolium castaneum, against chlorine dioxide and its suppression by heat treatment. Korean J. Appl. Entomol. 54, 151-158. https://doi.org/10.5656/KSAE.2015.05.0.021
  14. Kim, Y., Park, J., Kumar, S., Kwon, H., Na, J., Chun, Y., Kim, W., 2015b. Insecticidal activity of chlorine dioxide gas by inducing an oxidative stress to the red flour beetle, Tribolium castaneum. J. Stored Prod. Res. 64, 88-96. https://doi.org/10.1016/j.jspr.2015.09.001
  15. Kumar, S., Park, J., Kim, E., Na, J., Chun, Y.S., Kwon, H., Kim, W., Kim, Y., 2015. Oxidative stress induced by chlorine dioxide as an insecticidal factor to the Indian meal moth, Plodia interpunctella. Pesti. Biochem. Physiol. 124, 48-59. https://doi.org/10.1016/j.pestbp.2015.04.003
  16. Marais, E., Klok, C.J., Terblanche, J.S., Chown, S.L., 2005. Insect gas exchange patterns: a phylogenetic perspective. J. Exp. Biol. 208, 4495-4507. https://doi.org/10.1242/jeb.01928
  17. Na, J.H., Nam, Y., Ryoo, M.I., Chun, Y.S., 2006. Control of food pests by $CO_2$ modified atmosphere: effects of packing materials and exposure time on the mortality of Tribolium castaneum and Plodia interpunctella. Korean J. Appl. Entomol. 45, 363-369.
  18. Sammataro, D., Gerson, U., Needham, G., 2000. Parasitic mites of honey bees: life history, implications, and impact. Annu. Rev. Entomol. 45, 519-548. https://doi.org/10.1146/annurev.ento.45.1.519
  19. SAS Institute, Inc., 1989. SAS/STAT user's guide. SAS Institute, Inc., Cary, NC.
  20. Sumita, Y., Kawada, H., Minakawa, N., 2016. Mode of entry of a vaporized pyrethroid knockdown agent into the body of the housefly, Musca domestica (Diptera: Muscidae). Appl. Entomol. Zool. 51, 653-659. https://doi.org/10.1007/s13355-016-0443-2
  21. Tenney, S.M., 1985. Oxygen supply and limiting oxygen pressures in an insect larva. Respir. Physiol. 60, 121-134. https://doi.org/10.1016/0034-5687(85)90044-1