References
- Burkett, B.N., Schneiderman, H.A., 1967. Control of spiracles in silk moths by oxygen and carbon dioxide. Science 156, 1604-1606. https://doi.org/10.1126/science.156.3782.1604
- Dojchinov, G., Damcevski, K.A., Woodman, J.D., Haritos, V.S., 2010. Field evaluation of vaporised ethyl formate and carbon dioxide for fumigation of stored wheat. Pest Manag. Sci. 66, 417-424.
- Forster, T.D., Hetz, S.K., 2010. Spiracle activity in moth pupae-the role of oxygen and carbon dioxide revisited. J. Insect Physiol. 56, 492-501. https://doi.org/10.1016/j.jinsphys.2009.06.003
- Gates, D.J., 1998. The Chlorine Dioxide Handbook, American Water Works Association, Denver, CO.
- Gibbs, S.G., Lowe, J.J., Smith, P.W., Hewlett, A.L., 2012. Gaseous chlorine dioxide as an alternative for bedbug control. Infect. Control Hosp. Epidemiol. 33, 495-499. https://doi.org/10.1086/665320
- Gudowska, A., Boardman, L., Terblanche, J.S., 2016. The closed spiracle phase of discontinuous gas exchange predicts diving duration in the grasshopper Paracinema tricolor. J. Exp. Biol. 219, 2423-2425. https://doi.org/10.1242/jeb.135129
- Harrison, J.F., Waters, J.S., Cease, A.J., Vandenbrooks, J.M., Callier, V., Klok, C.J., Shaffer, K., Socha, J.J., 2013. How locusts breathe. Physiology 28, 18-27. https://doi.org/10.1152/physiol.00043.2012
- Janmaat, A.F., de Kogel, W.J., Woltering, E.J., 2002. Enhanced fumigant toxicity of p-cymene against Frankliniella occidentalis by simultaneous application of elevated levels of carbon dioxide. Pest. Manag. Sci. 58, 167-173. https://doi.org/10.1002/ps.432
- Jung, C., Kwon, K., Kim, Y., 2014. A postharvest control technique of the Oriental fruit moth, Grapholita molesta, infesting apples using CATTS. Korean J. Appl. Entomol. 53, 73-80. https://doi.org/10.5656/KSAE.2014.01.1.069
- Kaya, H.K., Gaugler, R., 1993. Entomopathogenic nematodes. Annu. Rev. Entomol. 38, 181-206. https://doi.org/10.1146/annurev.en.38.010193.001145
- Kim, C., Kwon, H., Kim, W., Kim, Y., 2017. Inhibitory effect of chlorine dioxide using reactive oxygen species against heart contraction of the Indianmeal moth, Plodia interpunctella. Korean J. Appl. Entomol. 56, 147-152.
- Kim, Y., Kumar, S., Cheon, W., Eo, H., Kwon, H., Jeon, Y., Jung, J., Kim, W., 2016. Anticancer and antiviral activity of chlorine dioxide by its induction of the reactive oxygen species. J. Appl. Biol. Chem. 59, 31-36. https://doi.org/10.3839/jabc.2016.007
- Kim, Y., Kumar, S., Rahman, M.M., Kwon, H., Chon, Y., Na, J., Kim, W., 2015a. Evasive behavior of the red flour beetle, Tribolium castaneum, against chlorine dioxide and its suppression by heat treatment. Korean J. Appl. Entomol. 54, 151-158. https://doi.org/10.5656/KSAE.2015.05.0.021
- Kim, Y., Park, J., Kumar, S., Kwon, H., Na, J., Chun, Y., Kim, W., 2015b. Insecticidal activity of chlorine dioxide gas by inducing an oxidative stress to the red flour beetle, Tribolium castaneum. J. Stored Prod. Res. 64, 88-96. https://doi.org/10.1016/j.jspr.2015.09.001
- Kumar, S., Park, J., Kim, E., Na, J., Chun, Y.S., Kwon, H., Kim, W., Kim, Y., 2015. Oxidative stress induced by chlorine dioxide as an insecticidal factor to the Indian meal moth, Plodia interpunctella. Pesti. Biochem. Physiol. 124, 48-59. https://doi.org/10.1016/j.pestbp.2015.04.003
- Marais, E., Klok, C.J., Terblanche, J.S., Chown, S.L., 2005. Insect gas exchange patterns: a phylogenetic perspective. J. Exp. Biol. 208, 4495-4507. https://doi.org/10.1242/jeb.01928
-
Na, J.H., Nam, Y., Ryoo, M.I., Chun, Y.S., 2006. Control of food pests by
$CO_2$ modified atmosphere: effects of packing materials and exposure time on the mortality of Tribolium castaneum and Plodia interpunctella. Korean J. Appl. Entomol. 45, 363-369. - Sammataro, D., Gerson, U., Needham, G., 2000. Parasitic mites of honey bees: life history, implications, and impact. Annu. Rev. Entomol. 45, 519-548. https://doi.org/10.1146/annurev.ento.45.1.519
- SAS Institute, Inc., 1989. SAS/STAT user's guide. SAS Institute, Inc., Cary, NC.
- Sumita, Y., Kawada, H., Minakawa, N., 2016. Mode of entry of a vaporized pyrethroid knockdown agent into the body of the housefly, Musca domestica (Diptera: Muscidae). Appl. Entomol. Zool. 51, 653-659. https://doi.org/10.1007/s13355-016-0443-2
- Tenney, S.M., 1985. Oxygen supply and limiting oxygen pressures in an insect larva. Respir. Physiol. 60, 121-134. https://doi.org/10.1016/0034-5687(85)90044-1