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Abstract  

 

Three-phase pulse width modulation (PWM) rectifiers are usually designed under the assumption of ideal ac power supply and 
input inductance. However, non-ideal circuit parameters may lead to a voltage collapse of PWM rectifiers. This paper investigates 
the mechanism of voltage collapse in three-phase PWM rectifiers. An analytical stability boundary expression is derived by 
analyzing the equilibrium point of the averaging state space model, which can not only accurately locate the voltage collapse 
boundary in the circuit parameter domain, but also reveal the essential characteristic of the voltage collapse. Results are obtained and 
compared with those of the trial-error method and the Jacobian method. Based on the analysis results, the system parameters can be 
divided into two categories. One of these categories affects the critical point, and other affects only the instability process. 
Furthermore, an effective control strategy is proposed to prevent a vulnerable system from being driven into the instability region. 
The analysis results are verified by the experiments. 
 
Key words: Non-ideal circuit parameters, Stability boundary, Three-phase PWM rectifiers, Voltage collapse 
 

I. INTRODUCTION 

Three-phase voltage-source pulse width modulation (PWM) 
rectifiers have been increasingly employed for 
high-performance applications such as uninterrupted power 
supplies, distributed generations and battery energy storage 
systems [1]-[3]. 

The operation and control of three-phase PWM rectifiers 
are usually analyzed under the assumption of ideal ac power 
supply and input inductor [4]. However, the ac circuit of a 
practical PWM rectifier, which is usually connected to a low 
voltage distribution network, has a large series resistance 
from the distribution network and input inductance. A large 
total series resistance may lead to system instability of 

three-phase PWM rectifiers [5]. 
Most studies have focused on improving the performance 

of three-phase PWM rectifiers [6]-[9]. Stability problems of 
three-phase PWM rectifiers under the condition of an ideal ac 
power supply have been investigated in [10]-[12]. The effects 
of grid impedance on the stability of three-phase PWM 
converters have recently become a significant topic [13]-[23]. 
Impedance based methods applying the Nyquist criterion are 
commonly used to investigate the dynamic interactions 
between the grid impedance and three-phase PWM 
converters [14]-[19]. The instabilities caused by impedance 
incompatibility between the PWM converter and the ac 
source are studied in [15], [16]. The results of these studies 
show that source-side dynamics can negatively interact with 
PWM converters, which results in distortions of the point of 
common coupling (PCC) voltage and input current. M. 
Céspedes and J. Sun extended the impedance-based stability 
analysis method to a more general unbalanced three-phase 
system characterized by couple sequence impedances [17], 
[18]. The coupling effect due to the grid impedance between 
paralleled grid-connected PWM converters has been 
described in [19], [20]. Although the impedance-based 
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method is suitable to resolve system impedance 
incompatibilities, it is actually based on small-signal linear 
models in the frequency domain [21]. As a result, the internal 
dynamics and nonlinear phenomena were disregarded. 

The averaging state space model is another normal method 
which can be applied to study the instability caused by 
complex system interactions [22]-[26]. The low-frequency 
instability phenomena in three-phase PWM converters 
connected to non-ideal grids with a large inductive 
impedance have been studied [22], [23]. Jacobian method 
obtained from an averaging state space model was used to 
identify the instability. The results show that the system 
looses stability via a Hopf bifurcation. The unstable 
oscillation of a matrix converter has been studied [25]. It 
concluded that there is no large reactive component in a 
matrix converter topology used to buffer energy, which leads 
to oscillations of the voltages and currents. The impact of a 
dc load disturbance on the catastrophic bifurcation of a PWM 
rectifier has been studied [26]. Simulation and test results 
show that a larger dc load might lead to system instability. 
Although an averaging state space model is suitable to 
analyze the nonlinear operation of a converter circuit, it 
cannot produce a compact analytical model to provide 
qualitative information and insight. In addition, the existing 
research on the critical point of the voltage collapse in 
three-phase PWM rectifiers always involves the control 
parameters and input inductance. As a result, the inherent 
instability characteristic behind the voltage collapse 
phenomena is ignored. 

In this paper, the stability boundary and voltage collapse 
mechanism of three-phase PWM rectifiers are analyzed. An 
analytical expression is obtained by considering the inherent 
circuit state equations. The voltage collapse point obtained by 
this analytical expression is consistent with the stability 
boundary obtained by the trial-error method and the Jacobian 
method. A simplified circuit model is proposed to illustrate 
the origin of the voltage collapse based on the maximum 
power transfer. The effects of various circuit parameters on 
the voltage collapse are identified in detail and an effective 
measure is proposed to avoid instability. 

This paper is organized as follows. Section II presents the 
phenomena of voltage collapse by simulations. In section III, 
nonlinear state equations of the closed-loop PWM rectifier 
are derived. In section IV, the stability boundary and the 
voltage collapse mechanism for the rectifier are analyzed 
from different aspects of the system dynamic. Section V 
describes the dynamic process of instability. In section VI, 
the parameters related to the voltage collapse phenomena are 
classified, and an effective protection measure is proposed. In 
section VII, some experiments have been carried out to verify 
the theoretical analysis. Section VIII concludes this paper. 
 

II. VOLTAGE COLLAPSE OF A PWM RECTIFIER 

 
 

Fig. 1. Three-phase PWM rectifier control block diagram. 

 
TABLE I 

PARAMETERS OF THE PWM RECTIFIER 

parameter em/V L/H C/F R/Ω v*
dc 

value 220 0.003 0.001 10 600 
parameter Kvp Kvi Kcp Kci fs/kHz 

value 0.02 9 10 100 10 

 
The dual-loop control block of a PWM rectifier shown in 

Fig. 1 is used to analyze system stability issues, where eS (s=a, 
b, c) represents the ac source, L is the filter inductance, and 
RS denotes the total equivalent series resistance on the ac side 
of the rectifier. The parameters of the rectifier are shown in 
Table I. The voltage collapse phenomena and the 
corresponding RS are investigated using Matlab simulation 
through the trial-error method. 

When RS≤1.00Ω, the rectifier operates in the stable 
condition with a constant dc voltage and a unity power factor. 
When RS reaches 1.01Ω, the voltage collapse occurs. Fig. 2 
shows transient waveforms of the dc voltage vdc and the phase 
current ia. Fig. 2(a) shows that the dc voltage keeps constant 
before 3.2s, starts to drop at 3.2s, and reduces to zero at about 
3.4s. The transient process can be observed in detail in Fig. 
2(b). The current ia increases continuously from the initial 
value, reaches to a peak value of 300A at 3.2s, and then drops 
to 225A at 3.4s, which is 60% larger than the normal stable 
current 140A. ia also lags the grid voltage ea, and the system 
loses stability. 

Fig. 3 shows the three PWM switching signals of the 
rectifier after the voltage collapse. It can be seen from Fig. 3 
that the switching signals SaSbSc present six combinations and 
that the switching frequency becomes 50Hz, which is far 
away from the normal carrier signal frequency of 10 kHz. 
When SaSbSc=101, the circuit diagram of the rectifier is 
shown in Fig. 4. It can be seen that the currents only circulate  
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(b) 
 

Fig. 2. Simulation results showing voltage collapse phenomena 
for RS=1.01Ω. (a) Transient waveforms of vdc and ia, and (b) the 
local close-up waveforms of vdc, ea and ia. 
 

among three phases through RS and L, and that there is no dc 
output current which leads to the dc voltage collapse to zero. 
The other switching states have the similar results. Fig. 5 
shows the critical points and the corresponding RS and R. It 
can be seen that there is a linear relationship between RS and 
R. The slop can be calculated as 0.1010. The maximum load 
that can be supplied reduces with the increase of RS. 
 

III. STATE EQUATION OF THE PWM RECTIFIER 

Although the instability of a PWM rectifier can be 
simulated using the trial-error method, the relationship 
between the circuit parameters and the instability cannot be 
explicitly represented and interpreted. A longer simulation 
time is required to determine the value of RS for the voltage 
collapse. Therefore, the quantitative relationship between the 
critical point and RS is important for the design of the PWM 
rectifier. 

The instability phenomena can be analyzed based on the 
state equations of the closed-loop system shown in Fig. 1. 
The time domain differential equations of the rectifier in the 
three-phase stationary coordinate are depicted as: 

 dc
S dc

, ,2 3 2
k k k

k k
k a b c

di d v d
L e R i v

dt 
      (1) 

 

dc dc

, , 2
k k

k a b c

dv d i v
C

dt R
 

 
(2) 

 
 

Fig. 3. Switching signals of the rectifier after a voltage collapse. 
 

 
Fig. 4. Circuit diagram when SaSbSc =101. 
 

 
Fig. 5. Critical points and the corresponding RS and R. 
 
where dk is the duty cycle of the switching function Sk. Sk=1 
means that the upper arms turn on and the lower arms shut 
down, while Sk=-1 means the opposite. 

When the d-axis is selected in the same direction as the 
voltage source ea, the state equations of (1) and (2) in the d-q 
synchronous rotating coordinate can be derived as: 

 S dc 2
d d

d q d
di d

L e Li R i v
dt

     (3)
 

 S dc 2
q q

q d q
di d

L e Li R i v
dt

     (4)
 

  dc dcd 1

2 d d q q
v v

C d i d i
dt R

    (5)
 

where dd and dq are the duty cycle in the d-q axis, and id and 
iq represent the d-q currents. 

According to the control block shown in Fig.1, the state 
equations of the dual-loop control system can be derived. The 
outer voltage loop state equation can be expresses as: 

 *1
dc dc

dx
v v

dt
   (6) 

 * *
vp dc dc vi 1( )di K v v K x    (7) 
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Fig. 6. Root locus of an eigenvalue moving from the left toward 
zero when RS increases. 
 
where Kvp and Kvi are the proportional and integral 
coefficients of the outer voltage loop, respectively. 

The inner current loop state equations are expressed as: 
 

*2
d d

dx
i i

dt
 

 
(8) 

 * *dc
cp ci 2( ) ( )

2 d d d d q
v

d e K i i K x Li      (9) 

 *3
q q

dx
i i

dt
   (10) 

 * *dc
cp ci 3( ) ( )

2 q q q q d
v

d e K i i K x Li      (11) 

where Kcp and Kci are the proportional and integral 
coefficients of the inner current loop, respectively. 

The normalized form of the state equations of (3)-(6), (8) 
and (10) can be written as: 

 

x f(x)  (12) 

where 1 2 3
T

d q dcx x x i i v   x is state vector for the state 

variables, and  1 2 3 4 5 6
T

f f f f f ff(x)  is the vector 

of the nonlinear functions (3)-(6), (8) and (10). Obviously, 
the state equations are nonlinear due to the quadratic items of 
the state functions. The state equations are the basis for 
solving the stability problem of nonlinear systems. 
 

IV. STABILITY BOUNDARY AND VOLTAGE 
COLLAPSE MECHANISM 

The stability boundary and voltage collapse mechanism for 
the rectifier can be analyzed from different perspective of the 
system dynamic. 

A. Eigenvalue Analysis 

In this method, system stability is determined by the 
eigenvalues of the Jacobian matrix at the equilibrium point of 
a nonlinear system. Setting f(x)=0, the equilibrium point of 
the rectifier are calculated as: 

2 2 2 2
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2 2
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4
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d d S dc d d S dc

S vi ci

d d S dc
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S
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R
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0x
 

TABLE II 
EIGENVALUES OF THE RECTIFIER WITH A VARYING RS 

RS Eigenvalues Stability

0.990Ω
-3517.2, -4.10691, -193.98, 
-92.535, -3570.0, -93.372 

Stable 

1.000Ω
-3519.1, -2.7331, -194.53, 
-92.578, -3573.4, -93.282 

Stable 

1.008Ω
-3518.8, -0.54342, -195.37 
-92.722, -3576.1, -93.210 

Stable 

1.010Ω
-3518.8-1.9049i, 0-1.2133i, 

-195.59+0.4443i, -92.759+0.1174i, 
-3576.8, -93.192 

Unstable

1.020Ω
-3.522.7-4.9807i, 0-3.2081i, 

-195.65+1.1772i, -92.682+0.3142i, 
-3580.2, -93.104 

Unstable

 

The Jacobian matrix J(x) of (12) at the equilibrium point is 
derived as: 

 
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where d cp d vp cp dc vp cp dc vi cp ci
dc dc
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dc dc

vi cp d ci d ci q d d cp d vp cp dc
dc dc

q
q cp q cp q

dc dc

J e K i K K v K K v K K x K x
C v

J e K i K i K x
C v

J K K i x K i x K i x i e K i K K v
C v

i
e K i K i

CC v

     

   
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   
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The eigenvalues for different values of RS can be obtained 
from the Jacobian matrix J(x) by numerical calculations. 
Table II shows a typical scenario for variations of the 
eigenvalues. It can be observed that all of the eigenvalues are 
negative real numbers when RS<1.0Ω. When RS 
(1.0Ω<RS<1.008Ω) increases, the second eigenvalue moves 
from negative toward the origin along the real axis. When 
RS=1.008Ω, the second eigenvalue is much closer to zero. 
Further increases of RS (RS>1.009Ω) lead to the movement of 
the second eigenvalue along the imaginary axis from zero to 
negative, and system becomes unstable. When RS=1.01Ω, the 
second eigenvalue is -1.2133i. The locus of the second 
eigenvalue is plotted in Fig. 6, which is a typical 
characteristic of a saddle-node bifurcation. This means that 
the system may lose its stability via a saddle-node bifurcation, 
resulting in a voltage collapse of the rectifier, which is fully 
coincident with the simulation results shown in Fig. 2. 

B. System Equilibrium Point Analysis 

Voltage collapses are often be linked with the loss of the 
stable bounded solutions of a nonlinear system modeled by 
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(12) near the critical operation condition [27]. However, the 
critical points calculated by Jacobian methods cannot fully 
reflect the characteristics of a structurally unstable system, 
and they cannot provide an analytical solution. The stability 
boundary of a rectifier is analyzed by the static bifurcation 
theory [28] in this section. An analytical solution of the 
stability boundary can be obtained solely from the inherent 
circuit state equations. Setting the derivatives of (3)-(5) to 
zero, the steady state circuit equations of the circuit are 
obtained as: 

 
dc

Scos 3
2d d m m d

V
U D V e R I   

 
(13) 

 dc sin
2q q m d

V
U D V LI      (14)

 

 dc 1

2 d d
V

D I
R

  (15)
 

where Id and Iq are the steady state values of id and iq, 
respectively, and Ud and Uq are the terminal voltages of the 
rectifier in the d-q axis. 

Substituting Dd from (15) into (13): 

 
2 2

S dc3 / 0d m dR I e I V R    (16) 

The system stability region can be determined by the roots 
of the quadratic equation of Id. 

When 2 2
m S dc3 4 / 0e R V R    , (16) has no real root, i. e. 

the rectifier has no equilibrium point. Thus, the system is not 
stable. 

When 2 2
m S dc3 4 / 0e R V R  (i.e., 2 2

S m dc0 3 4R e R V  ), 

there are two distinct real roots: 

 

2
2

1

2
2

2

4
3 3

2

4
3 3

2

dc S
m m

d
S

dc S
m m

d
S

V R
e e

RI
R

V R
e e

RI
R


  
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


 
 
  

(17) 

In this case, the system stability can be determined by the 
partial derivative of (16) with respect to Id.  

 

2
2( , ) 4

3d S dc S
m

d

f I R V R
e

I R


  


 (18) 

When 2 23 4 0m dc Se V R R   , Id1 is a convergence 

equilibrium point. When 2 23 4 0m dc Se V R R  , Id2 is a 

divergence equilibrium point. Fig. 7 shows the bifurcation 
curve with respect RS. It is obvious that the system losses 
stability through saddle-node bifurcation and the bifurcation 

point is 2 2
S m dc3 4R e R V ( 2

dc2 3d mI V e R ). 

The stability boundary of RS is obtained as: 

 
2 2

S m dc0 3 4R e R V   (19) 

For the rectifier with the parameters in Table I, the 
boundary of RS for stable operation can be obtained as  

 
 

Fig. 7. Curve of Id versus RS, and the corresponding bifurcation 
point. 
 
RS≤1.008Ω, which is the same as the results obtained in 
section IV-A. 

According to (19), the linear relationship between RS and R 
in the bifurcation point can be represented. The slope can be 

expressed as 2 2
S m dc3 4R R e R V , and it is 0.1008 with the 

parameters in Table I, which is much closer to the value of 
0.1010 obtained by simulation in section II. Moreover, 
equation (19) can be used to determine not only the voltage 
collapse boundaries for different parameters, but also the 
analytical relationship between the various parameters 
affecting the critical point. 

It can be noticed that the system equilibrium point x0 in the 
Jacobian matrix J(x) is determined by the stability boundary 
expression (19). This result further illustrates that the essence 
of the voltage collapse of the rectifier is a saddle-node 
bifurcation. 

In addition, equation (19) also shows the limit of the dc 
load disturbance for the system stability. 

 
2 2

m4 / 3S dcR R V e  (20) 

Therefore, Equation (20) can be used to predict the voltage 
collapse phenomenon in three-phase PWM rectifiers caused 
by load disturbances. 

C. Circuit Principle for Voltage Collapse 

The active power transferred to the rectifier bridge at the 
equilibrium point is: 

 d d q q d dP U I U I U I  
 

(21) 

The reactive power transferred to the rectifier is: 

 
2

d q q d q d dQ U I U I U I LI    
 

(22) 

Considering (13), (14), (21) and (22), the ac side of the 
rectifier can be represented by an equivalent impedance

p p pZ R X  , where: 

 

d d S d
p

d d

U e R I
R

I I


 

 
(23) 

 p q dX U I L  
 

(24) 

The equivalent circuit of the dc side of the rectifier can be 
represented by a dc current source. The equivalent circuit of 
the system is shown in Fig. 8. 

According to the maximum power transfer theorem, the  
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Fig. 8. Simplified equivalent circuit of the rectifier at the 
equilibrium point. 
 

 
Fig. 9. Curves of the input power versus the active current. 

 
maximum average active power transformed by the rectifier 

is calculated as 2
max 4g d SP e R

 
[29]. 

The active power delivered from a source to the rectifier 
while considering the loss of the equivalent impedance RS can 
be expressed as: 

 
2

g S m3d dP R I e I    (25) 

For stable operation, the input power to the rectifier and 
the output power to the dc load must be balanced as: 

 

2

dc g
dcV

P P
R

   (26) 

Fig. 9 shows curves of Pdc and Pg which are obtained from 
(25) and (26) based on the parameters in Table I. It can be 
seen that the system input power changes based on RS and id. 
When RS≤1.00Ω, the input power curve intersects with the dc 
load curve. In this case, the system reaches stable operation at 
the left insertion point of the two curves. When RS≥1.01Ω, 
the input power curve does not intersect with the dc load 
curve. This means that the system cannot reach a stable 
operation before dPg/did changes from positive into negative. 

Accordingly, the following should be satisfied: 

 

2 2

max 4
d dc

g
S

e V
P

R R
 

 
(27) 

Substituting 3d me e into (27) yields: 

 
2 2
m3 4 / 0S dce R V R   (28) 

It is obvious that (28) is the same as (19). Equation (27) 
further proves that RS is the key parameter for the voltage  

 
Fig. 10. Curve of the active current and its reference value. 

 
collapse of a rectifier. The active power transformed from the 
rectifier to the dc load is constrained by RS. When the dc load 
is over the transfer limit of the active power, the system 
operates into the nonlinear region, which finally leads to a dc 
voltage collapse. 

In addition, equation (24) is true if the system is stable and 
there is no over-modulation. It can be concluded from the 
above analysis that the voltage collapse boundary of the 
rectifier is not affected by the line inductance L. 

 

V. DYNAMIC PROCESS OF A VOLTAGE COLLAPSE 

As shown in Fig. 9, when the input power curve does not 
intersect with the load curve below Pgmax, the active current 
still increases in the promotion of the outer voltage loop. 
However, the input power starts to decrease with a further 
increase of the current id, and there is insufficient power for 

the load demand. For a larger *
dc dc( )v v , the following 

formula can be obtained from (7). 

 
* *

dc dc 1
vp vi

( )
0ddi d v v dx

K K
dt dt dt


    (29) 

Equation (29) shows that *
di  always increases with t. 

However, id has a maximum value idmax, as shown in Fig. 10. 
idmax can be obtained from (25) as: 

 m
max

S

3

2d
e

i
R

  (30) 

When *
di  becomes larger than idmax, id can no longer 

follow *
di  due to the nonlinear characteristic of the circuit. It 

is finally stable at a certain value, as shown in Fig. 10. iq is 
similar to id. When the system is stable, Ldid/dt=Liq/dt=0. This 
is common with a symmetrical three-phase supply voltage, 
namely, eq=0. Considering that vdc=0, combine these 
conditions with (3)-(4). Equation (31) can be obtained as: 

 

2 2
S S

2 2
S

lim / (( ) )

lim / (( ) )

d d
t

q d
t

i R e L R

i Le L R
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In this case, the value of *( )d di i  will be much larger, i.e.
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Fig. 11. Simulation results of a rectifier under different 
parameters; (a) waveform of the dc voltage for L=0.003H, 
RS=1.02Ω, Kvi=9; (b) for L=0.003H, RS=1.01Ω, Kvi=10; (c) for 
L=0.006H, RS=1.00Ω, Kvi=9; (d) for L=0.006H, RS=1.01Ω, Kvi=9. 
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  (32) 

where *
ku  (k=a, b, c) are modulation signals. At this time, 

the amplitude of the modulated signal is far larger than the 
amplitude of the carrier, which leads to the switching 
frequency becoming 50Hz, as shown in Fig. 3. In addition, 
the circuit diagram presents as Fig. 4. 
 

VI. PARAMETER IMPACTS ON A VOLTAGE 
COLLAPSE 

According to the former analysis, the parameters related to 
the critical point of the voltage collapse are shown in (19). 
The other parameters do not affect the critical point of the 
rectifier. However, they may affect the instability process. In 
this section, the impacts of parameters on the instability 
process are analyzed. Based on the analysis results, the 
parameters related to the voltage collapse phenomena can be  

TABLE III 
PARAMETER CLASSIFICATION 

Affect the critical point Affect only the process
em v*

dc R RS Kvp Kvi Kcp Kci L

 
classified. In addition, a protective measure is proposed. 

A. Effect of RS 

RS not only determines the critical point, but also affects 
the instability process when it beyond the limit defined by 
(19). In Fig. 11 (a), when RS increase to 1.02Ω, the system 
becomes unstable at 1.7s. Compared with the transient time 
3.2s shown in Fig. 2, the system loses stability much faster 
with the increase of RS. The maximum power point Pgmax of 
the rectifier decreases with the increases of RS. Therefore, the 
rectifier reaches Pgmax in a shorter time, which leads to the 
system lose stability much faster. 

B. Effect of the Control Parameters 

In Fig. 11 (b), when Kvi increases to 10, the rectifier 
becomes unstable at 2.9s, which is less than 3.2s, as shown in 
Fig. 2. This means that the unstable operation starts early 
when Kvi increases. This is because id raises fast due to 
increases of Kvi. Therefore, the rectifier has a shorter time to 
reach the maximum power point Pgmax. The duration of the 
system stable operation will be shortened accordingly. Kvp has 
the same results as Kvi. Similarly, with the outer voltage loop, 
larger values of Kcp and Kci accelerate the action of the inner 
current loop, which results in a voltage collapse of the 
rectifier in a shorter time. 

C. Effect of the Inductance L 

When RS=1.00Ω, which is very close to the critical point 
1.008, the system response for L=0.006H is shown in Fig. 11 
(c). It can be seen from Fig. 11 (c) that the dc voltage is kept 
constant and that the rectifier is stable. When RS=1.01Ω, 
which is larger than the critical value, the rectifier operates in 
the unstable condition. It can be seen from Fig. 11 (d) that the 
rectifier is kept stable for nearly 3s for L=0.006H. Comparing 
these results with those in Fig. 2, a larger inductance can 
accelerate the inherent instability of the system. If the other 
parameters remain constant, a larger inductance L accelerates 

the increase of the modulated signals *
ku  (k=a, b, c), which 

shortens the transient time for a voltage collapse of the 
rectifier. 

According to the above analysis, the parameters of the 
rectifier related to the voltage collapse phenomena can be 
divided into two categories as shown in Table III. The 
parameters shown in (19) affect the critical point, and the 
others affect only the process of the voltage collapse. 

D. Protective Measures for a Voltage Collapse 

Based on the above analysis, the parameters that affect the 
critical point of a voltage collapse have been shown in Table  
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Fig. 12. Phase portraits of the dc voltage and active current with 
and without load shedding. 
 

 
 

Fig. 13. Experiment platform of the proposed rectifier. 
 
III. It can be concluded that the dc load R is the only available 
parameter to prevent a rectifier from a voltage collapse under 
certain conditions. Therefore, load shedding can be used as 
an effective protection. Simulation and test results show that 
load shedding before the dc voltage reaches zero can restore a 
rectifier back to normal operation. 

Fig. 12 shows the dynamic response of a rectifier with the 
parameters shown in Table I. When RS=1.01Ω, the system 

operates along the curve ABCF  and ends at F after a period 

of fluctuation as a voltage collapse occurs. The system loses 
stability without load shedding. If the same load is curtailed 
at a different time in the process of dc voltage drops, the 
rectifier shows different responses. When a 3.6kW load is 
curtailed when the dc voltage drops to 565V, the system 

operates along the curve ABEG  and restores stability at 

point G. However, a 3.6kW load shedding cannot drive the 
system back to stability when the dc voltage decreases to 
560V and the system eventually operates along the curve 
ACDF  to F. Simulations show that more load curtailment is 

required to drive a system to a normal equilibrium point if the 
load is curtailed at the moment of the lower dc voltage. 

 

VII. EXPERIMENTAL VERIFICATION 

The stability boundary derived by the proposed methods is 
verified by a laboratory setup. Insulated gate bipolar 
transistor (IGBT) modules from Infineon (FF225R17ME4) 
are used. 

The rectifier is interfaced to the utility grid (380V line-line 
rms) through a 220V/30V step-down transformer. The  
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Fig. 14. Experiment waveforms of the dc voltage vdc, ac voltage 
eac and ac current iac: (a) for RS=2.65Ω, Kvi=9; (b) for RS=2.75Ω, 
Kvi=9; (c) for RS=2.75Ω, Kvi=11; (d) for a 50W load is curtailed 
after the dc voltage starts to drop. 
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parameters of the circuit are em=30V, L=3mH, C=1000uF, 
R=40Ω and V*

dc=100V. The parameters of the control system 
are Kvp=0.02, Kvi=9, Kcp=10, Kci=100 and fs=10 kHz. 
Considering the fact that the system needs to operate in the 
fault mode, the rectifier power is set to 1kW due to the 
limitations of the passive components. However, this does not 
affect the conclusion. 

The series resistances in the ac input circuit are measured. 
The inductor resistance is 0.15Ω, the on-resistance of the 
IGBT is 0.03Ω, the cable resistance is 0.27Ω and source 
resistance is 0.315Ω. The total circuit resistances Rt is 0.765Ω. 
A variable resistor Rv is connected to the ac circuit to observe 
the voltage collapse. The experiment results are measured by 
an oscilloscope from Teledyne Lecroy. The experimental 
platform is shown in Fig. 13. 

Test results of the rectifier are shown in Fig. 14. Fig. 14(a) 
shows the system responses when RS=Rt+Rv=2.65Ω. The 
system is switched on at t=0s. The dc voltage reaches 100V at 
about 1.1s and is stable after 1.1s. It can be seen from the 
close-up waveforms that the ac current and voltage are in 
phase with a unity power factor. The system is stable. 

Fig. 14(b) shows the transient process of the voltage 
collapse when RS=2.75Ω. The system is switched on at t=0s. 
It can be seen that the dc voltage reaches 100V at about 1.0s, 
begins to drop at about 1.7s, and falls to zero at about 3.1s. 
The ac current increases to a peak-to-peak value of 19A at 
about 3.0s and is stable at 18A at 3.1s. The system loses 
stability. The close-up waveforms show the steady-state 
results in detail. The ac current lags the voltage because the 
current circulates between the cables, the inductor and the 
IGBT. 

Fig. 14(c) shows the response of the rectifier by changing 
Kvi from Kvi=9 to Kvi=11 when RS=2.75Ω. The system is 
switched on at t=0s. It can be seen that the dc voltage begins 
to drop at about 1.0s, and falls to zero at about 1.8s. 
Compared to the results in Fig. 14(b), the system loses 
stability much faster with the increase of Kvi, which is 
consistent with the simulation results. The effects of the other 
parameters shown in section VI have the same results as the 
simulation. 

Fig. 14(d) shows the rectifier response for a 50W load 
shedding. The system is switched on at t=0s. It can be seen 
that the dc voltage reaches 100V at about 1.0s, and begins to 
drop at about 1.7s. When the 50W load is curtailed at about 
2.2s, the dc voltage restores stability at about 2.5s after a 
short period of transient rise and a new stable state is 
achieved to avoid the system collapse. 
 

VIII. CONCLUSIONS 

In a practical three-phase PWM rectifier, the equivalent 
resistance existing in the ac circuit may lead to a dc voltage 
collapse. This paper investigates the inherent mechanism 
behind the instability phenomena. An analytical expression 

has been developed to predict the critical point. The results 
show that the critical point of a voltage collapse is a 
saddle-node bifurcation point. They also show that the 
equivalent resistance is a key factor for the voltage collapse, 
which limits the active power transferred from the source to 
the dc load. Based on the obtained results, the parameters of 
the system can be divided into two categories: one of which, 
as shown in the analytical expression, affects the critical point, 
while the rest only affect the process of the voltage collapse. 
Finally, experimental results verify the rectifier stability 
boundary given by the theoretical analysis. The analysis 
results are useful for the control circuit design and the 
parameter selection of three-phase rectifiers. 
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