DOI QR코드

DOI QR Code

Low Parameter Sensitivity Deadbeat Direct Torque Control for Surface Mounted Permanent Magnet Synchronous Motors

  • Zhang, Xiao-Guang (Inverter Technologies Engineering Research Center of Beijing, North China University of Technology) ;
  • Wang, Ke-Qin (Collaborative Innovation Center of Key Power Energy-Saving Technologies in Beijing, North China University of Technology) ;
  • Hou, Ben-Shuai (Collaborative Innovation Center of Key Power Energy-Saving Technologies in Beijing, North China University of Technology)
  • Received : 2017.04.23
  • Accepted : 2017.06.08
  • Published : 2017.09.20

Abstract

In order to decrease the parameter sensitivity of deadbeat direct torque control (DB-DTC), an improved deadbeat direct torque control method for surface mounted permanent-magnet synchronous motor (SPMSM) drives is proposed. First, the track errors of the stator flux and torque that are caused by model parameter mismatch are analyzed. Then a sliding mode observer is designed, which is able to predict the d-q axis currents of the next control period for one-step delay compensation, and to simultaneously estimate the model parameter disturbance. The estimated disturbance of this observer is used to estimate the stator resistance offline. Then the estimated resistance is required to update the designed sliding-mode observer, which can be used to estimate the inductance and permanent-magnetic flux linkage online. In addition, the flux and torque estimation of the next control period, which is unaffected by the model parameter disturbance, is achieved by using predictive d-q axis currents and estimated parameters. Hence, a low parameter sensitivity DB-DTC method is developed. Simulation and experimental results show the validity of the proposed direct control method.

Keywords

References

  1. G. S. Buja and M. P. Kazmierkowski, "Direct torque control of PWM inverter-fed AC motors - A survey," IEEE Trans. Ind. Electron., Vol. 51, No. 4, pp. 744-757, Aug. 2004. https://doi.org/10.1109/TIE.2004.831717
  2. Y. Zhang and H. Yang, "Two-vector-based model predictive torque control without weighting factors for induction motor drives," IEEE Trans. Power Electron., Vol. 31, No. 2, pp. 1381-1390, Sep.2016. https://doi.org/10.1109/TPEL.2015.2416207
  3. W. Xie, X. Wang, F. Wang, W. Xu, R. M. Kennel, and R. D. Lorenz, "Finite-control-set model predictive torque control with a deadbeat solution for PMSM drives," IEEE Trans. Ind. Electron., Vol. 62, No. 9, pp. 5402-5410, Sep. 2015. https://doi.org/10.1109/TIE.2015.2410767
  4. J. S. Lee, C. Choi, J. Seok, and R. D. Lorenz, "Deadbeat-direct torque and flux control of interior permanent magnet synchronous machines with discrete time stator current and stator flux linkage observer," IEEE Trans. Ind. Appl., Vol. 47, No. 4, pp. 1749-1758, Jul. /Aug. 2011. https://doi.org/10.1109/TIA.2011.2154293
  5. C. Choi, J. Seok, and R. D. Lorenz, "Wide-speed direct torque and flux control for interior PM synchronous motors operating at voltage and current limits," IEEE Trans. Ind. Appl., Vol. 49, No. 1, pp. 109-117, Jan./Feb.2013. https://doi.org/10.1109/TIA.2012.2229684
  6. J. S. Lee, R. D. Lorenz, and M. A. Valenzuela, "Time optimal and loss minimizing deadbeat-direct torque and flux control for interior permanent magnet synchronous machines," IEEE Trans. Ind. Appl., Vol. 50, No. 3,pp. 1880-1890, May/Jun. 2014. https://doi.org/10.1109/TIA.2013.2287313
  7. N. T. West and R. D. Lorenz, "Digital implementation of stator and rotor flux-linkage observers and a stator-current observer for deadbeat direct torque control of induction machines," IEEE Trans. Ind. Appl., Vol. 45, No. 2, pp. 729-736, Mar./Apr. 2009. https://doi.org/10.1109/TIA.2009.2013567
  8. K.-B. Lee and F. Blaabjerg, "Sensorless DTC-SVM for induction motor driven by a matrix converter using a parameter estimation strategy," IEEE Trans. Ind. Electron., Vol. 55, No. 2, pp. 512-521, Feb. 2008. https://doi.org/10.1109/TIE.2007.911940
  9. Y. Wang, T. Ito, and R. D. Lorenz, "Loss manipulation capabilities of deadbeat direct torque and flux control induction machine drives," IEEE Trans. Ind. Appl., Vol. 51, No. 6, pp. 4554-4566, Nov./Dec. 2015. https://doi.org/10.1109/TIA.2015.2455030
  10. M. Saur, F. Ramos, A. Perez, D. Gerling, and R. D. Lorenz, "Implementation of deadbeat-direct torque and flux control for synchronous reluctance machines to minimize loss each switching period," 2016 IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 215-220, 2016.
  11. K. Wang, B. Chen, G. Shen, W. Yao, K. Lee, and Z. Lu, "Online updating of rotor time constant based on combined voltage and current mode flux observer for speed-sensorless AC drives," IEEE Trans. Ind. Electron., Vol. 61, No. 9, pp. 4583-4593, Sep. 2014. https://doi.org/10.1109/TIE.2013.2288227
  12. A. Yoo and S. Sul, "Design of flux observer robust to interior permanentmagnet synchronous motor flux variation," IEEE Trans. Ind. Appl., Vol. 45, No. 5, pp. 314-322, Sep./Oct. 2009.
  13. Z. Xu and M. F. Rahman, "An adaptive sliding stator flux observer for a direct-torque-controlled IPM synchronous motor drive," IEEE Trans. Ind. Appl., Vol. 54, No. 5, pp. 2398-2406, Sep./Oct. 2007.
  14. I. Boldea, M. Paicu, G. Andreescu, and F. Blaabjerg, "Active flux DTFCSVM sensorless control of IPMSM," IEEE Trans. Energy Convers.,Vol. 24, No. 2, pp. 314-322, Jun. 2009. https://doi.org/10.1109/TEC.2009.2016137
  15. W. Xu and R. D. Lorenz, "Reduced parameter sensitivity stator flux linkage observer in deadbeat-direct torque and flux control for IPMSMs," IEEE Trans. Ind. Appl., Vol. 50, No. 4, pp. 2636-2636, Jul./Aug. 2014.
  16. X. Zhang, B. Hou, and Y. Mei, "Deadbeat Predictive Current Control of Permanent-Magnet Synchronous Motors with Stator Current and Disturbance Observer," IEEE Trans. Power Electron., Vol. 32, No. 5, pp. 3818-3834, May, 2017. https://doi.org/10.1109/TPEL.2016.2592534
  17. G. Feng, C. Lai, K. Mukherjee, and N. C. Kar, "Current injection-based online parameter and VSI nonlinearity estimation for PMSM drives using current and voltage DC components," IEEE Trans. Transport. Electrific., Vol. 2, No. 2, pp. 119-128, Feb. 2016. https://doi.org/10.1109/TTE.2016.2538180
  18. Guodong Feng, Chunyan Lai and Narayan C. Kar "A novel current injection-based online parameter estimation method for PMSMs considering magnetic saturation," IEEE Trans. Magn., Vol. 52, No. 7, 2016.
  19. K. Liu, Z. Q. Zhu, Q. Zhang, and J. Zhang, "Influence of nonideal voltage measurement on parameter estimation in permanent-magnet synchronous machines," IEEE Trans. Ind. Electron., Vol. 59, No. 6, pp. 2438-2447, Jun. 2012. https://doi.org/10.1109/TIE.2011.2162214
  20. M. Rashed, P. F. MacConnell, and A. Fraser Stronach, "Nonlinear adaptive state-feedback speed control of a voltage fed induction motor with varying parameters," IEEE Trans. Ind. Appl., Vol. 42, No. 3, pp. 723-732, May/Jun. 2006. https://doi.org/10.1109/TIA.2006.872951
  21. Y. R. Kim, S. K. Sul, and M. H. Park, "Speed sensorless vector control of induction motor using extended kalman filter," IEEE Trans. Ind. Appl., Vol. 30, No. 5, pp. 1225-1233, Oct. 1994. https://doi.org/10.1109/28.315233
  22. Z. Q. Zhu, X. Zhu, and P. D. Sun, "Estimation of winding resistance and PM flux-linkage in brushless AC machines by reduced-order extended Kalman filter," in Proc. IEEE Int. Conf. Netw., Sens. Control, pp. 740-745, 2007.
  23. Y. Wang, N. Niimura, and R. D. Lorenz, "Real-time parameter identification and integration on deadbeat-direct torque and flux control (DB-DTFC) without inducing additional torque ripple," IEEE Trans. Ind. Appl., Vol. 52, No. 4, pp. 3104-3114, Jul./Aug. 2016. https://doi.org/10.1109/TIA.2016.2539257
  24. H. Le-Huy, K. Slimani, and P. Viarouge, "Analysis and implementation of a real-time predictive current controller for permanent-magnet synchronous servo drives," IEEE Trans. Ind. Electron., Vol. 41, No. 1, pp. 110-117, Feb. 1994. https://doi.org/10.1109/41.281616
  25. W. Xu and R. D. Lorenz, "High-frequency injection-based stator flux linkage and torque estimation for DB-DTFC implementation on IPMSMs considering cross-saturation effects," IEEE Trans. Ind. Appl., Vol. 50, No. 6, pp. 3805-3815, Nov./Dec. 2014. https://doi.org/10.1109/TIA.2014.2322134