DOI QR코드

DOI QR Code

Harvesting of microalgae via submerged membranes: flux, fouling and its reversibility

  • Elcik, Harun (Department of Environmental Engineering, Yildiz Technical University) ;
  • Cakmakci, Mehmet (Department of Environmental Engineering, Yildiz Technical University)
  • Received : 2016.05.21
  • Accepted : 2017.05.31
  • Published : 2017.09.25

Abstract

The purpose of this study was to investigate membrane fouling caused by microalgal cells in submerged membrane systems consisting of polymeric and ceramic microfiltration membranes. In this study, one polymeric (flat-sheet, pore size: $0.2{\mu}m$) and two ceramic (flat-sheet, pore size: $0.2{\mu}m$ and cylindrical, pore size: $1{\mu}m$) membranes were used. Physical cleaning was performed with water and air to determine the potential for reversible and irreversible membrane fouling. The study results showed that substantial irreversible membrane fouling (after four filtration cycles, irreversible fouling degree 27% (cleaning with water) and 38% (cleaning with air)) occurs in the polymeric membrane. In cleaning studies performed using water and air on ceramic membranes, it was observed that compressed air was more effective (recovery rate: 87-91%) for membrane cleaning. The harvesting performance of the membranes was examined through critical flux experiments. The critical flux values for polymeric membrane with a pore size of $0.20{\mu}m$ and ceramic membranes with a pore size of $0.20{\mu}m$ and $1{\mu}m$ were ${\leq}95L/m^2hour$, ${\leq}70L/m^2hour$ and ${\leq}55L/m^2hour$, respectively. It was determined that critical flux varies depending on the membrane material and the pore size. To obtain more information on membrane fouling caused by microalgal cells, the characterization of the fouled polymeric membrane was performed. This study concluded that ceramic membranes with a pore size of $0.2-1{\mu}m$ in the submerged membrane system could be efficiently used for microalgae harvesting by cleaning the membrane with compressed air at regular intervals.

Keywords

Acknowledgement

Supported by : Ministry of Science Technology and Industry

References

  1. Ahmad, A.L., Mat Yasin, N.H., Derek, C.J.C. and Lim, J.K. (2012), "Crossflow microfiltration of microalgae biomass for biofuel production", Desalination, 302, 65-70. https://doi.org/10.1016/j.desal.2012.06.026
  2. Ahmad, A.L., Mat Yasin, N.H., Derek, C.J.C. and Lim, J.K. (2014), "Chemical cleaning of a cross-flow microfiltration membrane fouled by microalgal biomass", J. Taiwan Inst. Chem. Eng., 45, 233-241. https://doi.org/10.1016/j.jtice.2013.06.018
  3. Ahmad, A.L., Yasin, N.H.M., Derek, C.J.C. and Lim, J.K. (2013), "Microfiltration of Chlorella sp.: Influence of material and membrane pore size", Membr. Water Treat., 4, 143-155. https://doi.org/10.12989/mwt.2013.4.2.143
  4. Al-lwayzy, S.H., Yusaf, T. and Al-Juboori, R.A. (2014), "Biofuels from the Fresh Water Microalgae Chlorella vulgaris (FWM-CV) for Diesel Engines", Energ., 7, 1829-1851. https://doi.org/10.3390/en7031829
  5. Ao, L., Liu, W., Zhao, L. and Wang, X. (20106), "Membrane fouling in ultrafiltration of natural water after pretreatment to different extents", J. Environ. Sci., 43, 234-243.
  6. Babel, S. and Takizawa, S. (2010), "Microfiltration membrane fouling and cake behavior during algal filtration", Desalination, 261, 46-51. https://doi.org/10.1016/j.desal.2010.05.038
  7. Bhave, R., Kuritz, T., Powell, L. and Adcock, D. (2012), "Membrane-based energy efficient dewatering of microalgae in biofuels production and recovery of value added co-products", Environ. Sci. Technol., 46, 5599-5606. https://doi.org/10.1021/es204107d
  8. Bilad, M.R., Arafat, H.A. and Vankelecom, I.F.J. (2014), "Membrane technology in microalgae cultivation and harvesting: A review", Biotechnol. Adv., 32, 1283-1300. https://doi.org/10.1016/j.biotechadv.2014.07.008
  9. Bilad, M.R., Discart, V., Vandamme, D., Foubert, I., Muylaert, K. and Vankelecom, I.F.J. (2013), "Harvesting microalgal biomass using a magnetically induced membrane vibration (MMV) system: Filtration performance and energy consumption", Biores. Technol., 138, 329-338. https://doi.org/10.1016/j.biortech.2013.03.175
  10. Bilad, M.R., Vandamme, D., Foubert, I., Muylaert, K. and Vankelecom, I.F.J. (2012), "Harvesting microalgal biomass using submerged microfiltration membranes", Biores. Technol., 111, 343-352. https://doi.org/10.1016/j.biortech.2012.02.009
  11. Chiou, Y.T., Hsieh, M.L. and Yeh, H.H. (2010), "Effect of algal extracellular polymer substances on UF membrane fouling", Desalination, 250, 648-652. https://doi.org/10.1016/j.desal.2008.02.043
  12. Dean, A.P., Sigee, D.C., Estrada, B. and Pittman, J.K. (2010), "Using FTIR spectroscopy for rapid determination of lipid accumulation in response to nitrogen limitation in freshwater microalgae", Biores. Technol., 101, 4499-4507. https://doi.org/10.1016/j.biortech.2010.01.065
  13. Delaunay, D., Rabiller-Baudry, M., Gozalvez-Zafrilla, J.M., Balannec, B., Frappart, M. and Paugam, L. (2008), "Mapping of protein fouling by FTIR-ATR as experimental tool to study membrane fouling and fluid velocity profile in various geometries and validation by CFD simulation", Chem. Eng. Pr. Proc. Intensif., 47, 1106-1117. https://doi.org/10.1016/j.cep.2007.12.008
  14. Duygu, D., Udoh, A.U., Ozer, T., Akbulut, A., Erkaya, I., Yildiz, K. and Guler, D. (2012), "Fourier transform infrared (FTIR) spectroscopy for identification of Chlorella vulgaris Beijerinck 1890 and Scenedesmus obliquus (Turpin) Kutzing 1833", Afr. J. Biotechnol., 11, 3817-3824.
  15. Elcik, H., Cakmakci, M. and Ozkaya, B. (2016), "The fouling effects of microalgal cells on crossflow membrane filtration", J. Membr. Sci., 499, 116-125. https://doi.org/10.1016/j.memsci.2015.10.043
  16. Howe, K.J., Ishida, K.P. and Clark, M.M. (2002), "Use of ATR/FTIR spectrometry to study fouling of microfiltration membranes by natural waters", Desalination, 147, 251-255. https://doi.org/10.1016/S0011-9164(02)00545-3
  17. Ibrahim, R.I., Mohammad, A.W. and Wong, Z.H. (2015), "Optimization of POME treatment process using microalgae and ultrafiltration", Membr. Water Treat., 6, 293-308. https://doi.org/10.12989/mwt.2015.6.4.293
  18. Jermann, D., Pronk, W., Kagi, R., Halbeisen, M. and Boller, M. (2008), "Influence of interactions between NOM and particles on UF fouling mechanisms", Water Res., 42, 3870-3878. https://doi.org/10.1016/j.watres.2008.05.013
  19. Jhaveri, J.H. and Murthy, Z.V.P. (2016), "A comprehensive review on anti-fouling nanocomposite membranes for pressure driven membrane separation processes", Desalination, 379, 137-154. https://doi.org/10.1016/j.desal.2015.11.009
  20. Li, H., Lin, Y., Yu, P., Luo, Y. and Hou, L. (2011), "FTIR study of fatty acid fouling of reverse osmosis membranes: Effects of pH, ionic strength, calcium, magnesium and temperature", Separ. Purif. Technol., 77, 171-178. https://doi.org/10.1016/j.seppur.2010.12.003
  21. Liang, H., Gong, W., Chen, J. and Li, G. (2008), "Cleaning of fouled ultrafiltration (UF) membrane by algae during reservoir water treatment", Desalination, 220, 267-272. https://doi.org/10.1016/j.desal.2007.01.033
  22. Mayers, J.J., Flynn, K.J. and Shields, R.J. (2013), "Rapid determination of bulk microalgal biochemical composition by Fourier-Transform Infrared spectroscopy", Biores. Technol., 148, 215-220. https://doi.org/10.1016/j.biortech.2013.08.133
  23. Qu, F., Liang, H., Tian, J., Yu, H., Chen, Z. and Li, G. (2012), "Ultrafiltration (UF) membrane fouling caused by cyanobateria: Fouling effects of cells and extracellular organics matter (EOM)", Desalination, 293, 30-37. https://doi.org/10.1016/j.desal.2012.02.020
  24. Qu, F., Liang, H., Zhou, J., Nan, J., Shao, S., Zhang, J. and Li, G. (2014), "Ultrafiltration membrane fouling caused by extracellular organic matter (EOM) from Microcystis aeruginosa: Effects of membrane pore size and surface hydrophobicity", J. Membr. Sci., 449, 58-66. https://doi.org/10.1016/j.memsci.2013.07.070
  25. Qu, F., Yan, Z., Liu, W., Shao, S., Ren, X., Ren, N., Li, G. and Liang, H. (2015), "Effects of manganese dioxides on the ultrafiltration membrane fouling by algal extracellular organic matter", Separ. Purif. Technol., 153, 29-36. https://doi.org/10.1016/j.seppur.2015.08.033
  26. Rickman, M., Pellegrino, J. and Davis, R. (2012), "Fouling phenomena during membrane filtration of microalgae", J. Membr. Sci., 423-424, 33-42. https://doi.org/10.1016/j.memsci.2012.07.013
  27. Rios, S.D., Clavero, E., Salvado, J., Farriol, X. and Torras, C. (2011), "Dynamic microfiltration in microalgae harvesting for biodiesel production", Indus. Eng. Chem. Res., 50, 2455-2460. https://doi.org/10.1021/ie101070q
  28. Sun, X., Wang, C., Tong, Y., Wang, W. and Wei, J. (2013), "A comparative study of microfiltration and ultrafiltration for algae harvesting", Algal Res., 2, 437-444. https://doi.org/10.1016/j.algal.2013.08.004
  29. Sun, X., Wang, C., Tong, Y., Wang, W. and Wei, J. (2014), "Microalgae filtration by UF membranes: influence of three membrane materials", Desal. Water Treat., 52, 5229-5236. https://doi.org/10.1080/19443994.2013.813103
  30. Yeh, K.L., Chang, J.S. and Chen, W.M. (2010), "Effect of light supply and carbon source on cell growth and cellular composition of a newly isolated microalga Chlorella vulgaris ESP-31", Eng. Life Sci., 10, 201-208. https://doi.org/10.1002/elsc.200900116
  31. Yu, H., Qu, F., Liang, H., Han, Z.S., Ma, J., Shao, S., Chang, H. and Li, G. (2014), "Understanding ultrafiltration membrane fouling by extracellular organic matter of Microcystis aeruginosa using fluorescence excitation-emission matrix coupled with parallel factor analysis", Desalination, 337, 67-75. https://doi.org/10.1016/j.desal.2014.01.014
  32. Zhang, X., Hu, Q., Sommerfeld, M., Puruhito, E. and Chen, Y. (2010), "Harvesting algal biomass for biofuels using ultrafiltration membranes", Biores. Technol., 101, 5297-5304. https://doi.org/10.1016/j.biortech.2010.02.007
  33. Zhang, Y., Zhao, Y., Chu, H., Zhou, X. and Dong, B. (2014), "Dewatering of Chlorella pyrenoidosa using diatomite dynamic membrane: Filtration performance, membrane fouling and cake behavior", Coll. Surf. B: Biointerf., 113, 458-466. https://doi.org/10.1016/j.colsurfb.2013.09.046

Cited by

  1. Advanced wastewater treatment using filamentous algae in raceway ponds with underwater light pp.1556-7230, 2018, https://doi.org/10.1080/15567036.2018.1549142