DOI QR코드

DOI QR Code

Utilization of aerobic granulation to mitigate membrane fouling in MBRs

  • Iorhemen, Oliver T. (Department of Civil Engineering, University of Calgary) ;
  • Hamza, Rania A. (Department of Civil Engineering, University of Calgary) ;
  • Tay, Joo Hwa (Department of Civil Engineering, University of Calgary)
  • Received : 2016.06.01
  • Accepted : 2017.03.01
  • Published : 2017.09.25

Abstract

Membrane bioreactor (MBR) is a compact and efficient wastewater treatment and reclamation technology; but, it is limited by membrane fouling. The control of membrane fouling significantly increases operational and maintenance costs. Bacteria and their byproducts - extracellular polymeric substances (EPS) - are major contributors to membrane fouling in MBRs. A recent attempt at fouling mitigation is the development of aerobic granular sludge membrane bioreactor (AGMBR) through the integration of a novel biotechnology - aerobic granulation - and MBR. This paper provides an overview on the development of AGMBR to mitigate membrane fouling caused by bacteria and EPS. In AGMBR, EPS are used up in granule formation; and, the rigid structure of granules provides a surface for bacteria to attach to rather than the membrane surface. Preliminary research on AGMBR using synthetic wastewater show remarkable membrane fouling reduction compared to conventional MBR, thus improved membrane filtration. Enhanced performance in AGMBR using actual municipal wastewater at pilot-scale has also been reported. Therefore, further research is needed to determine AGMBR optimal operational conditions to enhance granule stability in long-term operations and in full-scale applications.

Keywords

References

  1. Adav, S.S., Lee, D.J. and Lai, J.Y. (2009), "Proteolytic activity in stored aerobic granular sludge and structural integrity", Bioresour. Technol., 100(1), 68-73. https://doi.org/10.1016/j.biortech.2008.05.045
  2. Adav, S.S., Lee, D.J. and Ren, N.Q. (2007), "Biodegradation of pyridine using aerobic granules in the presence of phenol", Water Res., 41(13), 2903-2910. https://doi.org/10.1016/j.watres.2007.03.038
  3. Adav, S.S., Lee, D.J., Show, K.Y. and Tay, J.H. (2008), "Aerobic granular sludge: Recent advances", Biotechnol. Adv., 26(5), 411-423. https://doi.org/10.1016/j.biotechadv.2008.05.002
  4. Adav, S.S., Lee, D.J. and Tay, J.H. (2008), "Extracellular polymeric substances and structural stability of aerobic granule", Water Res., 42(6-7), 1644-1650. https://doi.org/10.1016/j.watres.2007.10.013
  5. Adav, S.S., Lee, D.J. and Tay, J.H. (2007), "Activity and structure of stored aerobic granules", Environ. Technol., 28(11), 1227-1235. https://doi.org/10.1080/09593332808618883
  6. Badruzzaman, M., Pinzon, J., Oppenheimer, J. and Jacangelo, J. G. (2012), "Sources of nutrients impacting surface waters in Florida: A review", J. Environ. Manage., 109, 80-92. https://doi.org/10.1016/j.jenvman.2012.04.040
  7. Baeza, J.A., Gabriel, D. and Lafuente, J. (2004), "Effect of internal recycle on the nitrogen removal efficiency of an anaerobic/anoxic/oxic (A2/O) wastewater treatment plant (WWTP)", Proc. Biochem., 39(11), 1615-1624. https://doi.org/10.1016/S0032-9592(03)00300-5
  8. Beun, J.J., Hendriks, A., van Loosdrecht, M.C.M., Morgenroth, E., Wilderer, P.A. and Heijnen, J.J. (1999), "Aerobic granulation in a sequencing batch reactor", Water Res., 33(10), 2283-2290. https://doi.org/10.1016/S0043-1354(98)00463-1
  9. Brindle, K. and Stephenson, T. (1996), "The application of membrane biological reactors for the treatment of wastewaters", Biotechnol. Bioeng., 49(6), 601-610. https://doi.org/10.1002/(SICI)1097-0290(19960320)49:6<601::AID-BIT1>3.0.CO;2-S
  10. Cassidy, D.P. and Belia, E. (2005), "Nitrogen and phosphorus removal from an abattoir wastewater in a SBR with aerobic granular sludge", Water Res., 39(19), 4817-4823. https://doi.org/10.1016/j.watres.2005.09.025
  11. Chang, I.S. and Lee, C.H. (1998), "Membrane filtration characteristics in membrane-coupled activated sludge system-the effect of physiological states of activated sludge on membrane fouling", Desalination, 120(3), 221-233. https://doi.org/10.1016/S0011-9164(98)00220-3
  12. Chang, I., Le Clech, P., Jefferson, B. and Judd, S. (2002), "Membrane fouling in membrane bioreactors for wastewater treatment", J. Environ. Eng., 128(11), 1018-1029. https://doi.org/10.1061/(ASCE)0733-9372(2002)128:11(1018)
  13. Chu, L., Zhang, X., Yang, F. and Li, X. (2006), "Treatment of domestic wastewater by using a microaerobic membrane bioreactor", Desalination, 189(1-3), 181-192. https://doi.org/10.1016/j.desal.2005.07.006
  14. Del Re, B., Sgorbati, B., Miglioli, M. and Palenzona, D. (2000), "Adhesion, autoaggregation and hydrophobicity of 13 strains of Bifidobacterium longum", Lett. Appl. Microbiol., 31(6), 438-442. https://doi.org/10.1046/j.1365-2672.2000.00845.x
  15. Drews, A. (2010), "Membrane fouling in membrane bioreactors - Characterisation, contradictions, cause and cures", J. Membr. Sci., 363(1-2), 1-28. https://doi.org/10.1016/j.memsci.2010.06.046
  16. Erguder, T.H. and Demirer, G.N. (2005), "Investigation of granulation of a mixture of suspended anaerobic and aerobic cultures under alternating anaerobic/microaerobic/aerobic conditions", Proc. Biochem., 40(12), 3732-3741. https://doi.org/10.1016/j.procbio.2005.05.005
  17. Friha, I., Karray, F., Feki, F., Jlaiel, L. and Sayadi, S. (2014), "Treatment of cosmetic industry wastewater by submerged MBR with consideration of microbial community dynamics", Int. Biodeterior. Biodegrad., 88, 125-133. https://doi.org/10.1016/j.ibiod.2013.12.015
  18. Guo, W., Ngo, H.H. and Li, J. (2012), "A mini-review on membrane fouling", Bioresour. Technol., 122, 27-34. https://doi.org/10.1016/j.biortech.2012.04.089
  19. Jang, N., Shon, H., Ren, X., Vigneswaran, S. and Kim, I.S. (2006), "Characteristics of bio-foulants in the membrane bioreactor", Desalination, 200(1-3), 201-202. https://doi.org/10.1016/j.desal.2006.03.295
  20. Jiang, H.L., Tay, J.H. and Tay, S.T.L. (2002), "Aggregation of immobilized activated sludge cells into aerobically grown microbial granules for the aerobic biodegradation of phenol", Lett. Appl. Microbiol., 35(5), 439-445. https://doi.org/10.1046/j.1472-765X.2002.01217.x
  21. Juang, Y.C., Su, A., Fang, L.H., Lee, D.J. and Lai, J.Y. (2011), "Fouling with aerobic granule membrane bioreactor", Water Sci. Technol., 64(9), 1870-1875. https://doi.org/10.2166/wst.2011.139
  22. Judd, S. (2008), "The status of membrane bioreactor technology", Trends Biotechnol., 26(2), 109-116. https://doi.org/10.1016/j.tibtech.2007.11.005
  23. Khan, M.Z., Mondal, P.K. and Sabir, S. (2013), "Aerobic granulation for wastewater bioremediation: A review", Canadian J. Chem. Eng., 91(6), 1045-1058. https://doi.org/10.1002/cjce.21729
  24. Kimura, K., Yamato, N., Yamamura, H. and Watanabe, Y. (2005), "Membrane fouling in pilot-scale membrane bioreactors (MBRs) treating municipal wastewater", Environ. Sci. Technol., 39(16), 6293-6299. https://doi.org/10.1021/es0502425
  25. Kos, B., Suskovic, J., Vukovic, S., Simpraga, M., Frece, J. and Matosic, S. (2003), "Adhesion and aggregation ability of probiotic strain Lactobacillus acidophilus M92", J. Appl. Microbiol., 94(6), 981-987. https://doi.org/10.1046/j.1365-2672.2003.01915.x
  26. Le-Clech, P., Chen, V. and Fane, T.A.G. (2006), "Fouling in membrane bioreactors used in wastewater treatment", J. Membr. Sci., 284(1-2), 17-53. https://doi.org/10.1016/j.memsci.2006.08.019
  27. Lee, D.J., Chen, Y.Y., Show, K.Y., Whiteley, C.G. and Tay, J.H. (2010), "Advances in aerobic granule formation and granule stability in the course of storage and reactor operation", Biotechnol. Adv., 28(6), 919-934. https://doi.org/10.1016/j.biotechadv.2010.08.007
  28. Lee, S. and Lee, C.H. (2000), "Effect of operating conditions on CaSO4 scale formation mechanism in nanofiltration for water softening", Water Res., 34(15), 3854-3866. https://doi.org/10.1016/S0043-1354(00)00142-1
  29. Lemaire, R., Yuan, Z., Blackall, L.L. and Crocetti, G.R. (2008), "Microbial distribution of Accumulibacter spp. and Competibacter spp. in aerobic granules from a lab-scale biological nutrient removal system", Environ. Microbiol., 10(2), 354-363. https://doi.org/10.1111/j.1462-2920.2007.01456.x
  30. Li, X.F., Li, Y.J., Liu, H., Hua, Z.Z., Du, G.C. and Chen, J. (2008), "Correlation between extracellular polymeric substances and aerobic biogranulation in membrane bioreactor", Sep. Purif. Technol., 59(1), 26-33. https://doi.org/10.1016/j.seppur.2007.05.024
  31. Li, X.M., Liu, Q.Q., Yang, Q., Guo, L., Zeng, G.M., Hu, J.M. and Zheng, W. (2009), "Enhanced aerobic sludge granulation in sequencing batch reactor by Mg2+ augmentation", Bioresour. Technol., 100(1), 64-67. https://doi.org/10.1016/j.biortech.2008.06.015
  32. Li, X., Gao, F., Hua, Z., Du, G. and Chen, J. (2005), "Treatment of synthetic wastewater by a novel MBR with granular sludge developed for controlling membrane fouling", Sep. Purif. Technol., 46(1-2): 19-25. https://doi.org/10.1016/j.seppur.2005.04.003
  33. Li, X., Li, Y., Liu, H., Hua, Z., Du, G. and Chen, J. (2007), "Characteristics of aerobic biogranules from membrane bioreactor system", J. Membr. Sci., 287(2), 294-299. https://doi.org/10.1016/j.memsci.2006.11.005
  34. Li, Z. and Wang, X. (2008), "Effects of salinity on the morphological characteristics of aerobic granules", Water Sci. Technol., 58(12), 2421-2426. https://doi.org/10.2166/wst.2008.838
  35. Lin, H., Gao, W., Meng, F., Liao, B.Q., Leung, K.T., Zhao, L., Chen, J. and Hong, H. (2012), "Membrane bioreactors for industrial wastewater treatment: A critical review", Crit. Rev. Environ. Sci. Technol., 42(7), 677-740. https://doi.org/10.1080/10643389.2010.526494
  36. Lin, H., Zhang, M., Wang, F., Meng, F., Liao, B.Q., Hong, H., Chen, J. and Gao, W. (2014), "A critical review of EPSs in MBRs: Characteristics, roles in membrane fouling & control strategies", J. Membr. Sci., 460, 110-125. https://doi.org/10.1016/j.memsci.2014.02.034
  37. Lin, H.J., Xie, K., Mahendran, B., Bagley, D.M., Leung, K.T., Liss, S.N. and Liao, B.Q. (2009), "Sludge properties and their effects on membrane fouling in submerged anaerobic membrane bioreactors (SAnMBRs) ", Water Res., 43(15), 3827-3837. https://doi.org/10.1016/j.watres.2009.05.025
  38. Lin, Y.M., Liu, Y. and Tay, J.H. (2003), "Development and characteristics of phosphorus-accumulating microbial granules in sequencing batch reactors", Appl. Microbiol. Biotechnol., 62(4), 430-435. https://doi.org/10.1007/s00253-003-1359-7
  39. Liu, Q.S., Tay, J.H. and Liu, Y. (2003), "Substrate concentration-independent aerobic granulation in sequential aerobic sludge blanket reactor", Environ. Technol., 24(10), 1235-1242. https://doi.org/10.1080/09593330309385665
  40. Liu, X.M., Sheng, G.P., Luo, H.W., Zhang, F., Yuan, S.J., Xu, J., Zeng, R.J., Wu, J.G. and Yu, H.Q. (2010), "Contribution of Extracellular Polymeric Substances (EPS) to the sludge aggregation", Environ. Sci. Technol., 44(11), 4355-4360. https://doi.org/10.1021/es9016766
  41. Liu, Y.Q., Liu, Y. and Tay, J.H. (2004), "The effects of extracellular polymeric substances on the formation and stability of biogranules", Appl. Microbiol. Biotechnol., 65(2), 143-148. https://doi.org/10.1007/s00253-004-1657-8
  42. Liu, Y.Q., Moy, B., Kong, Y.H. and Tay, J.H. (2010), "Formation, physical characteristics and microbial community structure of aerobic granules in a pilot-scale sequencing batch reactor for real wastewater treatment", Enzyme Microb. Technol., 46(6), 520-525. https://doi.org/10.1016/j.enzmictec.2010.02.001
  43. Liu, Y. and Fang, H.H.P. (2003), "Influences of Extracellular Polymeric Substances (EPS) on flocculation, settling, and dewatering of activated sludge", Crit. Rev. Environ. Sci. Technol., 33(3), 237-273. https://doi.org/10.1080/10643380390814479
  44. Liu, Y. and Liu, Q.S. (2006), "Causes and control of filamentous growth in aerobic granular sludge sequencing batch reactors", Biotechnol. Adv., 24(1), 115-127. https://doi.org/10.1016/j.biotechadv.2005.08.001
  45. Liu, Y. and Tay, J.H. (2002), "The essential role of hydrodynamic shear force in the formation of biofilm and granular sludge", Water Res., 36(7), 1653-1665. https://doi.org/10.1016/S0043-1354(01)00379-7
  46. Liu, Y. and Tay, J.H. (2004), "State of the art of biogranulation technology for wastewater treatment", Biotechnol. Adv., 22(7), 533-563. https://doi.org/10.1016/j.biotechadv.2004.05.001
  47. Liu, Y., Xu, H., Yang, S.F. and Tay, J.H. (2003), "A general model for biosorption of Cd2+, Cu2+ and Zn2+ by aerobic granules", J. Biotechnol., 102(3), 233-239. https://doi.org/10.1016/S0168-1656(03)00030-0
  48. Liu, Y., Yang, S.F., Tan, S.F., Lin, Y.M. and Tay, J.H. (2002), "Aerobic granules: a novel zinc biosorbent", Lett. Appl. Microbiol., 35(6), 548-551. https://doi.org/10.1046/j.1472-765X.2002.01227.x
  49. Liu, Y., Yang, S.F., Tay, J.H., Liu, Q.S., Qin, L. and Li, Y. (2004), "Cell hydrophobicity is a triggering force of biogranulation", Enzyme Microb. Technol., 34(5), 371-379. https://doi.org/10.1016/j.enzmictec.2003.12.009
  50. McSwain, B., Irvine, R., Hausner, M. and Wilderer, P. (2005), "Composition and distribution of extracellular polymeric substances in aerobic flocs and granular sludge", Appl. Environ. Microbiol., 71(2), 1051-1057. https://doi.org/10.1128/AEM.71.2.1051-1057.2005
  51. Meng, F., Chae, S.R., Drews, A., Kraume, M., Shin, H.S. and Yang, F. (2009), "Recent advances in membrane bioreactors (MBRs): Membrane fouling and membrane material", Water Res., 43(6), 1489-1512. https://doi.org/10.1016/j.watres.2008.12.044
  52. Metcalf & Eddy Inc., Tchobanoglous, G., Stensel, H.D., Tsuchihashi, R., Burton, F.L., Abu-Orf, M., Bowden, G. and Pfrang, W. (2014), Wastewater Engineering: Treatment & Resource Recovery, 5th Edition, New York, McGraw Hill.
  53. Meyer, R.L., Saunders, A.M., Zeng, R.J., Keller, J. and Blackall, L.L. (2003), "Microscale structure and function of anaerobic-aerobic granules containing glycogen accumulating organisms", FEMS Microbiol. Ecol., 45(3), 253-261. https://doi.org/10.1016/S0168-6496(03)00159-4
  54. Morgenroth, E., Sherden, T., Van Loosdrecht, M.C.M., Heijnen, J.J. and Wilderer, P.A. (1997), "Aerobic granular sludge in a sequencing batch reactor", Water Res., 31(12), 3191-3194. https://doi.org/10.1016/S0043-1354(97)00216-9
  55. Moy, B.Y.P., Tay, J.H., Toh, S.K., Liu, Y. and Tay, S.T.L. (2002), "High organic loading influences the physical characteristics of aerobic sludge granules", Lett. Appl. Microbiol., 34(6), 407-412. https://doi.org/10.1046/j.1472-765X.2002.01108.x
  56. Mutamim, N.S.A., Noor, Z.Z., Hassan, M.A.A. and Olsson, G. (2012), "Application of MBR technology in treating high strength industrial wastewater: A performance review", Desalination, 305, 1-11. https://doi.org/10.1016/j.desal.2012.07.033
  57. Mutamim, N.S.A., Noor, Z.Z., Hassan, M.A.A., Yuniarto, A. and Olsson, G. (2013), "Membrane bioreactor: Applications and limitations in treating high strength industrial wastewater", Chem. Eng. J., 225, 109-119. https://doi.org/10.1016/j.cej.2013.02.131
  58. Nancharaiah, Y.V., Schwarzenbeck, N., Mohan, T.V.K., Narasimhan, S.V., Wilderer, P.A. and Venugopalan, V.P. (2006), "Biodegradation of nitrilotriacetic acid (NTA) and ferric-NTA complex by aerobic microbial granules", Water Res., 40(8), 1539-1546. https://doi.org/10.1016/j.watres.2006.02.006
  59. Ng, K.K., Lin, C.F., Lateef, S.K., Panchangam, S.C., Hong, P.K.A. and Yang, P.Y. (2010), "The effect of soluble microbial products on membrane fouling in a fixed carrier biological system", Sep. Purif. Technol., 72(1), 98-104. https://doi.org/10.1016/j.seppur.2010.01.011
  60. Oleszkiewicz, J.A. and Barnard, J.L. (2006), "Nutrient removal technology in north america and the european union: A review", Water Qual. Res. J. Canada, 41(4), 449-462. https://doi.org/10.2166/wqrj.2006.048
  61. Pan, J.R., Su, Y. and Huang, C. (2010), "Characteristics of soluble microbial products in membrane bioreactor and its effect on membrane fouling", Desalination, 250(2), 778-780. https://doi.org/10.1016/j.desal.2008.11.040
  62. Peng, D.C., Bernet, N., Delgenes, J.P. and Moletta, R. (1999), "Aerobic granular sludge-a case report", Water Res., 33(3), 890-893. https://doi.org/10.1016/S0043-1354(98)00443-6
  63. Pronk, M., de Kreuk, M.K., de Bruin, B., Kamminga, P., Kleerebezem, R. and van Loosdrecht, M.C.M. (2015), "Full scale performance of the aerobic granular sludge process for sewage treatment", Water Res., 84, 207-217. https://doi.org/10.1016/j.watres.2015.07.011
  64. Qin, L., Liu, Y. and Tay, J.H. (2004), "Effect of settling time on aerobic granulation in sequencing batch reactor", Biochem. Eng. J., 21(1), 47-52. https://doi.org/10.1016/j.bej.2004.03.005
  65. Sajjad, M., Kim, I.S. and Kim, K.S. (2016), "Development of a novel process to mitigate membrane fouling in a continuous sludge system by seeding aerobic granules at pilot plant", J. Membr. Sci., 497, 90-98. https://doi.org/10.1016/j.memsci.2015.09.021
  66. Sheng, G.P., Yu, H.Q. and Li, X.Y. (2010), "Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: A review", Biotechnol. Adv., 28(6), 882-894. https://doi.org/10.1016/j.biotechadv.2010.08.001
  67. Shirazi, S., Lin, C.J. and Chen, D. (2010), "Inorganic fouling of pressure-driven membrane processes-A critical review", Desalination, 250(1), 236-248. https://doi.org/10.1016/j.desal.2009.02.056
  68. Show, K.Y., Lee, D.J. and Tay, J.H. (2012), "Aerobic granulation: advances and challenges", Appl. Biochem. Biotechnol., 167, 1622-1640. https://doi.org/10.1007/s12010-012-9609-8
  69. Smith, V.H. and Schindler, D.W. (2009), "Eutrophication science: where do we go from here?", Trends Ecol. Evol., 24(4), 201-207. https://doi.org/10.1016/j.tree.2008.11.009
  70. Smith, V.H., Tilman, G.D. and Nekola, J.C. (1999), "Eutrophication: impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems", Environ. Poll., 100(1-3), 179-196. https://doi.org/10.1016/S0269-7491(99)00091-3
  71. Spettmann, D., Eppmann, S., Flemming, H.C. and Wingender, J. (2007), "Simultaneous visualisation of biofouling, organic and inorganic particle fouling on separation membranes", Water Sci. Technol., 55(8-9), 207-210. https://doi.org/10.2166/wst.2007.260
  72. Sun, F.Y., Wang, X.M. and Li, X.Y. (2011), "Change in the fouling propensity of sludge in membrane bioreactors (MBR) in relation to the accumulation of biopolymer clusters", Bioresour. Technol., 102(7), 4718-4725. https://doi.org/10.1016/j.biortech.2011.01.048
  73. Sun, X.F., Wang, S.G., Liu, X.W., Gong, W.X., Bao, N., Gao, B.Y. and Zhang, H.Y. (2008), "Biosorption of Malachite Green from aqueous solutions onto aerobic granules: Kinetic and equilibrium studies", Bioresour. Technol., 99(9), 3475-3483. https://doi.org/10.1016/j.biortech.2007.07.055
  74. Tay, J.H., Ivanov, V., Pan, S. and Tay, S. T.L. (2002), "Specific layers in aerobically grown microbial granules", Lett. Appl. Microbiol., 34(4), 254-257. https://doi.org/10.1046/j.1472-765x.2002.01099.x
  75. Tay, J.H., Liu, Q.S. and Liu, Y. (2001), "Microscopic observation of aerobic granulationin sequential aerobic sludge blanket reactor", J. Appl. Microbiol., 91, 168-175. https://doi.org/10.1046/j.1365-2672.2001.01374.x
  76. Tay, J.H., Liu, Q.S. and Liu, Y. (2002), "Characteristics of aerobic granules grown on glucose and acetate in sequential aerobic sludge blanket reactors", Environ. Technol., 23(8), 931-936. https://doi.org/10.1080/09593332308618363
  77. Tay, J.H., Liu, Y., Tay, S.L. and Hung, Y.T. (2009), Aerobic Granulation Technology, Advanced Biological Treatment Processes, Eds. L.K. Wang, N.K. Shammas and Y.T. Hung, New York, Humana Press.
  78. Tay, J.H., Pan, S., He, Y. and Tay, S.T.L. (2004), "Effect of organic loading rate on aerobic granulation. I: Reactor performance", J. Environ. Eng., 130(10), 1094-1101. https://doi.org/10.1061/(ASCE)0733-9372(2004)130:10(1094)
  79. Tay, J.H., Liu, Q.S. and Liu, Y. (2001), "The effects of shear force on the formation, structure and metabolism of aerobic granules", Appl. Microbiol. Biotechnol., 57(1-2), 227-233. https://doi.org/10.1007/s002530100766
  80. Tay, J.H., Liu, Q.S. and Liu, Y. (2001), "The role of cellular polysaccharides in the formation and stability of aerobic granules", Lett. Appl. Microbiol., 33(3), 222-226. https://doi.org/10.1046/j.1472-765x.2001.00986.x
  81. Tay, J.H., Tay, S.T.L., Ivanov, V., Pan, S., Jiang, H.L. and Liu, Q.S. (2003), "Biomass and porosity profiles in microbial granules used for aerobic wastewater treatment", Lett. Appl. Microbiol., 36(5), 297-301. https://doi.org/10.1046/j.1472-765X.2003.01312.x
  82. Tay, J.H., Yang, P., Zhuang, W.Q., Tay, S.T.L. and Pan, Z.H. (2007), "Reactor performance and membrane filtration in aerobic granular sludge MBR", J. Membr. Sci., 304(1-2), 24-32. https://doi.org/10.1016/j.memsci.2007.05.028
  83. Tay, S.T.L., Ivanov, V., Yi, S., Zhuang, W.Q. and Tay, J.H. (2002), "Presence of anaerobic bacteroides in aerobically grown microbial granules", Microbial Ecology, 44(3), 278-285. https://doi.org/10.1007/s00248-002-2014-z
  84. Thanh, B.X., Visvanathan, C. and Ben Aim, R. (2013), "Fouling characterization and nitrogen removal in a batch granulation membrane bioreactor", Int. Biodeterior. Biodegrad., 85, 491-498. https://doi.org/10.1016/j.ibiod.2013.02.005
  85. Thanh, B.X., Visvanathan, C., Sperandio, M. and Aim, R.B. (2008), "Fouling characterization in aerobic granulation coupled baffled membrane separation unit", J. Membr. Sci., 318(1-2), 334-339. https://doi.org/10.1016/j.memsci.2008.02.058
  86. Toh, S., Tay, J., Moy, B., Ivanov, V. and Tay, S. (2003), "Size-effect on the physical characteristics of the aerobic granule in a SBR", Appl. Microbiol. Biotechnol., 60(6), 687-695. https://doi.org/10.1007/s00253-002-1145-y
  87. Tsuneda, S., Nagano, T., Hoshino, T., Ejiri, Y., Noda, N. and Hirata, A. (2003), "Characterization of nitrifying granules produced in an aerobic upflow fluidized bed reactor", Water Res., 37(20), 4965-4973. https://doi.org/10.1016/j.watres.2003.08.017
  88. Tu, X., Zhang, S., Xu, L., Zhang, M. and Zhu, J. (2010), "Performance and fouling characteristics in a membrane sequence batch reactor (MSBR) system coupled with aerobic granular sludge", Desalination, 261(1-2), 191-196. https://doi.org/10.1016/j.desal.2010.03.034
  89. Ueda, T. and Hata, K. (1999), "Domestic wastewater treatment by a submerged membrane bioreactor with gravitational filtration", Water Res., 33(12), 2888-2892. https://doi.org/10.1016/S0043-1354(98)00518-1
  90. van Dijk, L. and Roncken, G.C.G. (1997), "Membrane bioreactors for wastewater treatment: The state of the art and new developments", Water Sci. Technol., 35(10), 35-41. https://doi.org/10.1016/S0273-1223(97)00219-9
  91. Vanysacker, L., Declerck, P., Bilad, M.R. and Vankelecom, I.F.J. (2014), "Biofouling on microfiltration membranes in MBRs: Role of membrane type and microbial community", J. Membr. Sci., 453, 394-401. https://doi.org/10.1016/j.memsci.2013.11.024
  92. Vijayalayan, P., Thanh, B.X. and Visvanathan, C. (2014), "Simultaneous nitrification denitrification in a Batch Granulation Membrane Airlift Bioreactor", Int. Biodeterior. Biodegrad., 95, 139-143. https://doi.org/10.1016/j.ibiod.2014.05.020
  93. Wang, X.M. and Li, X.Y. (2008), "Accumulation of biopolymer clusters in a submerged membrane bioreactor and its effect on membrane fouling", Water Res., 42(4-5), 855-862. https://doi.org/10.1016/j.watres.2007.08.031
  94. Wang, X.M., Sun, F.Y. and Li, X.Y. (2011), "Investigation of the role of biopolymer clusters in MBR membrane fouling using flash freezing and environmental scanning electron microscopy", Chemosphere, 85(7), 1154-1159. https://doi.org/10.1016/j.chemosphere.2011.08.038
  95. Wang, Y., Zhong, C., Huang, D., Wang, Y. and Zhu, J. (2013), "The membrane fouling characteristics of MBRs with different aerobic granular sludges at high flux", Bioresour. Technol., 136, 488-495. https://doi.org/10.1016/j.biortech.2013.03.066
  96. Wang, Z., Ma, J., Tang, C.Y., Kimura, K., Wang, Q. and Han, X. (2014), "Membrane cleaning in membrane bioreactors: A review", J. Membr. Sci., 468, 276-307. https://doi.org/10.1016/j.memsci.2014.05.060
  97. Wang, Z., Wu, Z., Yin, X. and Tian, L. (2008), "Membrane fouling in a submerged membrane bioreactor (MBR) under sub-critical flux operation: Membrane foulant and gel layer characterization", J. Membr. Sci., 325(1), 238-244. https://doi.org/10.1016/j.memsci.2008.07.035
  98. WEF (2011). Membrane Bioreactors: Water Environment Federation (WEF) Manual of Practice No. 36, McGraw-Hill, New York.
  99. Yang, S.F., Liu, Q.S., Tay, J.H. and Liu, Y. (2004), "Growth kinetics of aerobic granules developed in sequencing batch reactors", Lett. Appl. Microbiol., 38(2), 106-112. https://doi.org/10.1111/j.1472-765X.2003.01452.x
  100. Yang, S.F., Tay, J.H. and Liu, Y. (2003), "A novel granular sludge sequencing batch reactor for removal of organic and nitrogen from wastewater", J. Biotechnol., 106(1), 77-86. https://doi.org/10.1016/j.jbiotec.2003.07.007
  101. Yilmaz, G., Lemaire, R., Keller, J. and Yuan, Z. (2008), "Simultaneous nitrification, denitrification, and phosphorus removal from nutrient-rich industrial wastewater using granular sludge", Biotechnol. Bioeng., 100(3), 529-541. https://doi.org/10.1002/bit.21774
  102. Yu, G.H., Juang, Y.C., Lee, D.J., He, P.J. and Shao, L.M. (2009), "Filterability and extracellular polymeric substances of aerobic granules for AGMBR process", J. Taiwan Inst. Chem. Eng., 40(4), 479-483. https://doi.org/10.1016/j.jtice.2009.03.005
  103. Zheng, Y.M., Yu, H.Q., Liu, S.J. and Liu, X.Z. (2006), "Formation and instability of aerobic granules under high organic loading conditions", Chemosphere, 63(10), 1791-1800. https://doi.org/10.1016/j.chemosphere.2005.08.055
  104. Zhu, J. and Wilderer, P.A. (2003), "Effect of extended idle conditions on structure and activity of granular activated sludge", Water Res., 37(9), 2013-2018. https://doi.org/10.1016/S0043-1354(02)00585-7
  105. Zhu, L., Lv, M.L., Dai, X., Yu, Y.W., Qi, H.Y. and Xu, X.Y. (2012), "Role and significance of extracellular polymeric substances on the property of aerobic granule", Bioresour. Technol., 107, 46-54. https://doi.org/10.1016/j.biortech.2011.12.008