DOI QR코드

DOI QR Code

Practical Guide to NMR-based Metabolomics - I : Introduction and Experiments

  • Received : 2017.07.30
  • Accepted : 2017.08.19
  • Published : 2017.09.20

Abstract

Metabolomics is one of latest '-omics', which is to analyze metabolome in cells, tissues and biofluids and to study metabolisms. It has become increasingly popular since 1990. The first goal of metabolomics is to analyze metabolites in a technical aspect. The major two analytical platforms in metabolomics are NMR spectroscopy and mass spectrometry (MS). MS is superior to NMR for detecting many more metabolites. That is one of the most important factors in metabolomics. However, NMR also has several advantages over MS. In this review, I firstly introduced metabolomics by comparing NMR-based metabolomics and MS-based metabolomics. Second, I explored technical issues on sample preparation and NMR experiments for metabolite identification and quantification.

Keywords

References

  1. D. S. Wishart, T. Jewison, A. C. Guo, M. Wilson, C. Knox, Y. Liu, Y. Djoumbou, R. Mandal, F. Aziat, E. Dong, S. Bouatra, I. Sinelnikov, D. Arndt, J. Xia, P. Liu, F. Yallou, T. Bjorndahl, R. Perez-Pineiro, R. Eisner, F. Allen, V. Neveu, R. Greiner, and A. Scalbert, Nucleic Acids Res. 41, D801 (2013)
  2. S. Wold, K. Esbensen, and P. Geladi, Chemometr. Intell. Lab. 2, 37 (1987) https://doi.org/10.1016/0169-7439(87)80084-9
  3. D. G. Hebels, P. Georgiadis, H. C. Keun, T. J. Athersuch, P. Vineis, R. Vermeulen, L. Portengen, I. A. Bergdahl, G. Hallmans, D. Palli, B. Bendinelli, V. Krogh, R. Tumino, C. Sacerdote, S. Panico, J. C. Kleinjans, T. M. de Kok, M. T. Smith, S. A. Kyrtopoulos, and C. EnviroGenomarkers Project, Enviorn. Health Persp. 121, 480 (2013)
  4. A. Sreekumar, L. M. Poisson, T. M. Rajendiran, A. P. Khan, Q. Cao, J. Yu, B. Laxman, R. Mehra, R. J. Lonigro, Y. Li, M. K. Nyati, A. Ahsan, S. Kalyana-Sundaram, B. Han, X. Cao, J. Byun, G. S. Omenn, D. Ghosh, S. Pennathur, D. C. Alexander, A. Berger, J. R. Shuster, J. T. Wei, S. Varambally, C. Beecher, and A. M. Chinnaiyan, Nature 457, 910 (2009) https://doi.org/10.1038/nature07762
  5. A.-H. M. Emwas, R. M. Salek, J. L. Griffin, and J. Merzaban, Metabolomics 9, 1048 (2013) https://doi.org/10.1007/s11306-013-0524-y
  6. M. Ernst, D. B. Silva, R. R. Silva, R. Z. N. Vêncio, and N. P. Lopes, Nat. Prod. Rep. 31, 784 (2014) https://doi.org/10.1039/c3np70086k
  7. O. Fiehn, J. Kopka, P. Dormann, T. Altmann, R. N. Trethewey, and L. Willmitzer, Nat. Biotechnol. 18, 1157 (2000) https://doi.org/10.1038/81137
  8. R. Goodacre, S. Vaidyanathan, W. B. Dunn, G. G. Harrigan, and D. B. Kell, Trends Biotechnol. 22, 245 (2004) https://doi.org/10.1016/j.tibtech.2004.03.007
  9. O. Fiehn, Comp Funct Genomics 2, 155 (2001) https://doi.org/10.1002/cfg.82
  10. G. G. Harrigan, and R. Goodacre, Metabolic profiling : its role in biomarker discovery and gene function analysis, Kluwer Academic, (2003)
  11. S. J. Hur, H. W. Lee, A. H. Shin, and S. J. Park, J. Kor. Magn. Reson. Soc. 18, 10 (2014) https://doi.org/10.6564/JKMRS.2014.18.1.010
  12. W. S. Choi, Y. W. In, H. H. Kim, J. S. Hyun, and S. J. Park, J. Kor. Magn. Reson. Soc. 21, 44 (2017) https://doi.org/10.6564/JKMRS.2017.21.2.044
  13. A. M. Weljie, J. Newton, P. Mercier, E. Carlson, and C. M. Slupsky, Anal. Chem. 78, 4430 (2006) https://doi.org/10.1021/ac060209g
  14. H. E. Kim, Y. H. Choi, K. H. Choi, J. S. Park, H. S. Kim, J. H. Jeon, M. S. Heu, D. S. Shin, and J. H. Lee, J. Kor. Magn. Reson. Soc. 16, 91 (2012)
  15. C. A. Sellick, R. Hansen, G. M. Stephens, R. Goodacre, and A. J. Dickson, Nat. Protoc. 6, 1241 (2011) https://doi.org/10.1038/nprot.2011.366
  16. D. Yoon, I. H. Jo, and S. Kim, J. Kor. Magn. Reson. Soc. 20, 82 (2016) https://doi.org/10.6564/JKMRS.2016.20.3.082
  17. O. Beckonert, M. Coen, H. C. Keun, Y. Wang, T. M. D. Ebbels, E. Holmes, J. C. Lindon, and J. K. Nicholson, Nat. Protoc. 5, 1019 (2010) https://doi.org/10.1038/nprot.2010.45
  18. S. Tiziani, A. H. Emwas, A. Lodi, C. Ludwig, C. M. Bunce, M. R. Viant, and U. L. Gunther, Anal. Biochem. 377, 16 (2008) https://doi.org/10.1016/j.ab.2008.01.037
  19. J. R. Sheedy, P. R. Ebeling, P. R. Gooley, and M. J. McConville, Anal. Biochem. 398, 263 (2010) https://doi.org/10.1016/j.ab.2009.11.027
  20. V. M. Asiago, G. A. Nagana Gowda, S. Zhang, N. Shanaiah, J. Clark, and D. Raftery, Metabolomics 4, 328 (2008) https://doi.org/10.1007/s11306-008-0121-7
  21. J. C. Lindon, J. K. Nicholson, and J. R. Everett, Annu. Rep. NMR Spectrosc. 38, 1 (1999)
  22. M. Lauridsen, S. H. Hansen, J. W. Jaroszewski, and C. Cornett, Anal. Chem. 79, 1181 (2007) https://doi.org/10.1021/ac061354x
  23. L. Jiang, J. Huang, Y. Wang, and H. Tang, The Analyst 137, 4209 (2012) https://doi.org/10.1039/c2an35392j
  24. C. Xiao, F. Hao, X. Qin, Y. Wang, and H. Tang, The Analyst 134, 916 (2009) https://doi.org/10.1039/b818802e
  25. H. Mo, and D. Raftery, J. Magn. Reson. 190, 1 (2008) https://doi.org/10.1016/j.jmr.2007.09.016
  26. P. Giraudeau, V. Silvestre, and S. Akoka, Metabolomics 11, 1041 (2015) https://doi.org/10.1007/s11306-015-0794-7
  27. O. Beckonert, H. C. Keun, T. M. Ebbels, J. Bundy, E. Holmes, J. C. Lindon, and J. K. Nicholson, Nat. Protoc. 2, 2692 (2007) https://doi.org/10.1038/nprot.2007.376