DOI QR코드

DOI QR Code

NMR Study on the Preferential Binding of the Zα Domain of Human ADAR1 to CG-repeat DNA Duplex

  • Lee, Ae-Ree (Department of Chemistry and RINS, Gyeongsang National University) ;
  • Choi, Seo-Ree (Department of Chemistry and RINS, Gyeongsang National University) ;
  • Seo, Yeo-Jin (Department of Chemistry and RINS, Gyeongsang National University) ;
  • Lee, Joon-Hwa (Department of Chemistry and RINS, Gyeongsang National University)
  • Received : 2017.07.24
  • Accepted : 2017.08.05
  • Published : 2017.09.20

Abstract

The Z-DNA domain of human ADAR1 ($Z{\alpha}_{ADAR1}$) produces B-Z junction DNA through preferential binding to the CG-repeat segment and destabilizing the neighboring AT-rich region. However, this study could not answer the question of how many base-pairs in AT-rich region are destabilized by binding of $Z{\alpha}_{ADAR1}$. Thus, we have performed NMR experiments of $Z{\alpha}_{ADAR1}$ to the longer DNA duplex containing an 8-base-paired (8-bp) CG-repeat segment and a 12-bp AT-rich region. This study revealed that $Z{\alpha}_{ADAR1}$ preferentially binds to the CG-repeat segment rather than AT-rich region in a long DNA and then destabilizes at least 6 base-pairs in the neighboring AT-rich region for efficient B-Z transition of the CG-repeat segment.

Keywords

References

  1. A. Herbert, and A. Rich, J. Biol. Chem., 271, 11595 (1996) https://doi.org/10.1074/jbc.271.20.11595
  2. A. Herbert, and A. Rich, Genetica, 106, 37 (1999) https://doi.org/10.1023/A:1003768526018
  3. A. Rich, and S. Zhang, Nat. Rev. Genet., 4, 566, (2003)
  4. T. Schwartz, M. A. Rould, K. Lowenhapt, A. Herbert, and A. Rich, Science, 284, 1841 (1999) https://doi.org/10.1126/science.284.5421.1841
  5. T. Schwartz, J. Behlke, K. Lowenhapt, U. Heinemann, and A. Rich, Nat. Struct. Biol., 8, 761 (2001) https://doi.org/10.1038/nsb0901-761
  6. S. C. Ha, N. K. Lokanath, D. Van Quyen, C. A. Wu, K. Lowenhapt, A. Rich, Y. G. Kim, and K. K. Kim, Proc. Natl. Acad. Sci. USA, 101, 14367 (2004) https://doi.org/10.1073/pnas.0405586101
  7. D. Kim, J. Hur, K. Park, S. Bae, D. Shin, S. C. Ha, H. Y. Hwang, S. Hohng, J.-H. Lee, S. Lee, Y. G. Kim, and K. K. Kim, Nucleic Acids Res., 42, 5937 (2014) https://doi.org/10.1093/nar/gku189
  8. S. C. Ha, K. Lowenhaupt, A. Rich, Y.-G. Kim, and K. K. Kim, Nature, 437, 1183 (2005) https://doi.org/10.1038/nature04088
  9. Y.-M. Lee, H.-E. Kim, C.-J. Park, A.-R. Lee, H.-C. Ahn, S. J. Cho, K.-H. Choi, B.-S. Choi, and J.-H. Lee, J. Am. Chem. Soc., 134, 5276 (2012) https://doi.org/10.1021/ja211581b
  10. Y.-M. Lee, H.-E. Kim, E.-H. Lee, Y.-J. Seo, A.-R. Lee, and J.-H. Lee, Biophys Chem., 172, 18 (2013) https://doi.org/10.1016/j.bpc.2012.12.002
  11. Y.-M. Kang, J. Bnag, E.-H. Lee, H.-C. Ahn, Y.-J. Seo, K. K. Kim, Y.-G. Kim, B.-S. Choi, and J.-H. Lee, J. Am. Chem. Soc., 131, 11485 (2009) https://doi.org/10.1021/ja902654u
  12. J-.H. Lee, and A. Pardi, Nucleic Acids Res., 35, 2965 (2007) https://doi.org/10.1093/nar/gkm184
  13. Y.-J. Seo, H.-C. Ahn, E.-H. Lee, J. Bang, Y.-M. Kang, H.-E. Kim, Y.-M. Lee, K. Kim, B.-S. Choi, and J.-H. Lee, FEBS Lett., 584, 4344 (2010) https://doi.org/10.1016/j.febslet.2010.09.036
  14. H.-E. Kim, Y.-G. Choi, A.-R. Lee, Y.-J. Seo, M.-Y. Kwon, and J.-H. Lee, J. Kor. Magn. Reson. Soc., 18, 52 (2014)
  15. Y.-G. Choi, H.-E. Kim, and J.-H. Lee, J. Kor. Magn. Reson. Soc., 17, 76 (2013) https://doi.org/10.6564/JKMRS.2013.17.2.076