J. KSIAM Vol.21, No.3, 143-154, 2017 http://dx.doi.org/10.12941/jksiam.2017.21.143

OPTIMAL CONTROL ANALYSISFOR THE MERS-COV OUTBREAK: SOUTH
KOREA PERSPECTIVES

DONGHO LEE', M. A. MASUD?, BYUL NIM KIM 2, AND CHUNYOUNG OH*f

! DEPARTMENT OFMATHEMATICS GRADUATE SCHOOL, KYUNGPOOK NATIONAL UNIVERSITY, KOREA
E-mail address| dh- 0625@annai | . net

2 INSTITUTE OFNATURAL SCIENCE, UNITED INTERNATIONAL UNIVERSITY, DHAKA , BANGLADESH
E-mail addressmasud@ ns. ui u. ac. bd

3 DEPARTMENT OFMATHEMATICS, KYUNGPOOK NATIONAL UNIVERSITY, KOREA
E-mail addressai r 1227@nmai | . com

4 DEPARTMENT OFMATHEMATICS EDUCATION, CHONNAM NATIONAL UNIVERSITY, KOREA
E-mail addresscyoh@ nu. ac. kr

ABSTRACT. This paper presents the mathematical model for the MER&-Qutbreak in
South Korea, and the optimal control for two interventioratggies (contact, hospitalization)
is implemented. After the MERS-CoV outbreak, hospitalizinfected individuals did not help
to prevent the spread of infection. However, the intenanto control contact was effective.
It was effective the intervention to controlling both of ¢act and hospitalization of infection
population.

1. INTRODUCTION

Middle East respiratory syndrome(MERS) is a viral respinatdisease caused by a novel
coronavirus (Middle East respiratory syndrome coronavimr MERS-CoV) that was first
identified in Saudi Arabia in 2012. MERS-CoV is a zoonoticusir that is, it is transmitted
between animals and people. Studies have shown that humeaiméeted by direct or indirect
contact with infected dromedary camels [17]. Close corttativeen a person and an infected
camel appears to be necessary for the transmission of MERSH has been suggested that
the virus could infect humans through the air [16]. Matheoahimodeling for disease trans-
mission has been done by many different authors to understendynamic spread of disease
in humans. The case of the MERS-CoV Drosten et al [7] provideszription of a fatal case
of MERS-CoV infection and associated phylogenetic analysguery et al [9] analyzed the
clinical features of infected cases, and Memish et al [1&] ARTawfiq et al [1] described the
epidemiological data in terms of family clusters and hadjzied patient, respectively.
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After MERS was first reported in Saudi Arabia in 2012, an ozdilirof Middle East respi-
ratory syndrome coronavirus occurred in South Korea frony MaJuly 2015. The number of
patients with MERS-CoV increased explosively in severaiials in South Korea that were
not familiar with the symptoms of MERS. For Koreans, the ptemce of the infection was
shocking, because South Korea has advanced medical anid peklth systems. However,
some of hospitals became part of the route of the infectisan ehough the hospitals were
advanced medical centers. The best description of MERS-i68®&buth Korea is presented
by Korea Centers for Disease Control and Prevention [1ffjpagh it was briefly mentioned
by Chowell et al [4] and Cho and Chu [2]. [15] formulated a nestfatical model for MERS
transmission dynamics and estimating transmission rdtesy estimated the basic reproduc-
tion number using the estimates of the transmission ratehleifirst two periods.

Our aim is to minimize the MERS-CoV transmission. We presentathematical model
for the dynamics of MERS-CoV transmission, including annagiomatic class, as well as
strategies to reduce infections by means of two mechanisaaksicing the close contact rate
and increasing the hospitalized cases.

Numerical simulations show control strategies for MERS/@ansmission in South Korea.
In Section 2, we formulate a mathematical model, and Sedtipnesents numerical results
based on optimal control of the spread in Section 3. Cormhgsare presented in the final
section.

2. MATHEMATICAL MODELING

Our model of MERS-CoV transmission is based on the model inhtan et al [15] and
Chowell et al [3], and deals with the outbreak in South Korea.

The model uses six epidemiological classes. Each indiViguia one of the six classes.
The classes are: susceptilsleexposed (or high-risk latenfy, symptomatic and infectious,
infected but asymptotiel, hospitalizedH, and recovered. It is assumed that only infectious
and hospitalized individuals can infect others and asympt@ individuals also can.

k(1= p)

%
I+l A+loH)
B 1N 2
- L Vr
N :
FIGURE 1. A transmission diagram of individuals in the differentdemnio-
logical classes in our model.



OPTIMAL CONTROL ANALYSIS FOR THE MERS-COV OUTBREAK: SOUTH KREAN PERSPECTIVES 145

In Chowell et al [3], the actual data of the zoonotic casesevgathered so they were able
to take secondary cases as well as index cases into accobhatmaddel of [15] considered
a MERS-CoV model without the zoonotic case. Meanwhile, waeddthe susceptible class
and infection but asymptotic clagsto the model [15] because asymptomatic individuals can
infect susceptible people. With the given assumptions hadllustration in Fig. 1, we obtain
the following six-dimensional system of nonlinear diffetial equations;

ds  (I+hLA+1LH)
dt p N S,
dE (I+hA+1H)
= _ _ kE
T N S~ kE,
dl
= = B = (a+ )1,
t
a (2.1)
k(] = _
7 k(1 —p)E — 1A,
dH
Y, = aI - rH7
dt v i
dR
P il +vH + 1A

WhereN =S+ FE+ 1+ A+ H+ R.

Here S is the human-to-human transmission rate per unit of timegnd [, quantify the
relative transmissibility of infection by the asymptoncatiass and hospitalized patients, re-
spectively;x is the rate at which an individual leaves the exposed claggbygming infectious
(symptomatic or asymptomaticy; is the proportion of progression from exposed clasto
symptomatic infectious clasg and(1 — p) is that of progression to asymptomatic class
v, IS the average rate at which symptomatic individuals argitelized andy; is the recovery
rate without being hospitalized;. is the recovery rate of hospitalized patients.

The variable domain of the model is

Q={(S,E,I,A,H,R) ¢ R|S,E,I,A,H,R > 0}.

All parameters used in the modél; !/, s, k, p, 1 — p, V4, 7 @nd~y are positive. It can be ver-
ified that() is a positively invariant set with respect to the model. Troaled (2.1) has two equi-
librium points which are given byS, £, I, A, H, R) = (0,0,0,0,0,0) and(S, E,I, A, H,R) =
(S,0,0,0,0, R).

For the prevalence of the disease, the basic reproductivbatells us whether the disease
will persist or disappear, so we consider the basic reptixdunumber.

2.1. Basic Reproductive Number. The dynamic behavior of the model can be classified by
the basic reproductive number. This threshold conditiderd@nes whether an infectious dis-
ease will spread in a susceptible population when the dissastroduced into the population
[10]. The threshold is calculated by using the spectralusdif a next-generation (infection)
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matrix of a model [6]. It is given mathematically as
RO = p(FV_1)7

wherep is defined as the spectral radius of the next- generatiorixmair —!. F is the rate of
appearance of new infections in clasand)V is the transfer of individuals out of clasdy all
other means. Then, we find the Jacobian matri¥ ¢f) andV(z), and denotd” = [0.F; /0]
andV = [0V;/0z;] evaluated at the disease free equilibrium pdiigt which consists of
S = N. From the spectral radius, we gef as following;

_ p PYal2 (1- p)h)
Ro=¢ <% T Yr(Ya + 1) L (22)

As shown in (2.2), the basic reproductive number of systerh) (Bepends on parameters
B6,11,1s, v, p,v1, @ndy,. The disease-free equilibrium point will be locally asyompitically
stable iff Ry < 1. The basic reproductive numbRr, measures how quickly a disease spreads
in its initial phase as well as predicts whether a diseadeébedome endemic or whether it will
die out.

Sensitivity indices allow us to measure the relative changevariable when a parameter
changes. By the usR, the sensitivities are parametefs;y,, i.e,

_ORo B _

Sg = —— =1
R ve  aP(I2— o)
e Oy, Ro e _ 12(p=1) (val2p)
7 0 (Yat+1) V1 + Yr (Ya+71)

The value ofR could be reduced by reducitjand increasingy,.

The application of control measures changes of some pagawvedties in the model; more-
over we would need to know the effects that the changes peodndR, for control. The
control variable®) < u;(t) < 1 and0 < uy(t) < 1 represent the amount of intervention at
time t to reduce the contact rafeand to increase hospitalizatioy.

Since the infection shapes a large cluster in a hospital oneider the parameters related to
hospital and contact with asymptomatic classes.

3. MERS-QV OPTIMAL CONTROL ANALYSIS

For the outbreak of MERS-CoV in South Korea, the infectioapss a large cluster in a
hospital. Tracing the movements of patients at a South Kohespital has helped identify
how the Middle East Respiratory Syndrome (MERS) virus wasdmitted from a patient to
individuals(including patients, visitors and healthearorkers) in an overcrowded emergency
room. In this section, we carry out optimal control analystich focuses on the two inter-
vention strategies(contact, hospitalization) considieénethe model (3.1). The idea of adding
control terms was inspired by the model of Y. Kim et al [15].

Now we formulate an optimal control problem for the transsiis dynamics of MERS-CoV
in South Korea. We add control terms to the our model (2.1 mibdel (2.1) is re-formulated
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as an optimal control problem as follows;

ds I+ LA+ 1LH)
B - 80w LT g
dE I+ LA+ 1LH)

dl

— = kpE — 1] — 74(1 + wua(t))I,
dt

A (3.1)
i k(1 —p)E — 1A,
dH
= = Yo (1 4+ wua(t)) I — - H,

dR

T il + v H + 1A

The control variable:; (¢) represents the number of interventions needed to reduamthe
tact rate at time. After control, the contact rate {d — w;(t)) whereu; (t) measures the level
of successful prevention efforts. The control variabét) represents efforts to increase the
hospitalization rate. It is assumed that the hospitabratate increases at a rate proportional
to ug(t) and wherew is a rate constant.

We show that it is possible to implement time dependent obntr(¢) and uq(t) while
minimizing the cost of implementation of such control measu

We define the set of admissible controls as follows;

U = {(u1(t),ua(t))|ui(t), ua(t) are Lebesgue measurable [On7],0 < wuy(t), ua(t) < 1}

whereT is the final time.

Focusing the optimal control problem on minimizing the nembf contacts and hospital-
ized individuals the problem reduces to minimizing the dosttional. To specify the cost, we
define the cost functional as

T By , By 4
J(uy,ug) = / {All(t) + AsA(t) + AsH(t) + 7ul(t) + 7u2(t)} dt (3.2)
0
subject to the differential equations (3.1).

In the objective functional the quantitie$;, A,, and A, represent the weight constants
of the symptomatic infectious class, asymptomatic clasd fespitalized individuals, respec-
tively. In the objective functional, the weight coefficiei®; and B, are constants that represent
cost. The termg Byu? and$ B,u3 describe the costs associated with the transmission by con-
tact rate with the susceptible individuals and hospitéilirafor minimizing the symptomatic
infectious individuals, respectively.

3.1. Existence of an Optimal Control. The necessary condition, to be satisfied by the control
and the corresponding states, is derived using Pontrygalyiakimum Principle [13]. Using the
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differential equation of the state variable of the model)3the Hamiltonian is given by:
HX(2),U(t), A(t))

T
—AI(t) + AsA(t) + AsH(E) + %ug(t) N %u%(t) A (dé_it) )

B B
—ALI(t) + A A(t) + AsH(t) + 711@(75) + gug(t)

B —u (I—l—llA—l-lQH)
T o3
4 {5(1 _ o ndE 111]4V+ LH)g lﬁE}

+ A3 {kpE — y1I — v4(1 + wug) I}

+ A {k(l = p)E — 714}

+ X5 {7a(1 + wua ()1 — v H}

+ Xg {’y]I + v H + ’Y]A} ,
where);(j = 1,2,...,6) are the adjoint variables and the state variables for thelptpn
dynamics are denoted b¥(¢t) = (S(¢),I(t), E(t), A(t), H(t), R(t)), the existence of which
is guaranteed by the Pontryagin’s Maximum Principle [14].

Our goal is to find optimal controls; (¢) andw(¢) such that
J(u, usy) = min{J (u1, uz)|(ui,ug) € U}. (3.4)

Such optimal control functions} andw; exist and the optimality system can be derived, and
which satisfy conditions summarized in the following theror.

Theorem 3.1. LetS*(¢), E*(t), I*(t), A*(t), H*(t) and R*(t) be optimal state solutions with

associated optimal control variablesg andw3 for the optimal control problem (3.1) and (3.2),

then there exists an adjoint variable(t) = (A1(t), Aa(t), A3(t), Aa(t), As(t), A6 (t)) that sat-

isfies

Vo Bl —uy(t))(I + 11 A+ 12H)
t N

Ny = Aok — Agkp — Mk(1 — p)

Ay =—A; + W(Al — A2) + Ya(1 4+ wuz) (A3 — As)+

7[()\3 — )\6) (35)

Bl — "]l\lf(lt))lls(A1 — X2) +91( A1 — Ag)
B(L = ui ()l
N

(A1 = A2)

Ny = A+

)\/5 = —As+

/ —_—
6 =

(A1 = A2) + 7 (A5 — Xg)
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with transversality conditions (or boundary conditions)
N(T)=0,j=1,2,..,6.

Furthermore, the optimal controlg; and« are given by

up (1) :min{l,max{o, ps +Z1AJ\;‘BZ2H ) (A2 —/\1)}}7
1
. (3.6)
w3(0) = min {1 mas {0, 2 B0 =2 A L
2

Proof. To determine the adjoint equations and the transversalitgitions, we use the Hamil-
tonian (3.3). By Pontryagin’s Maximum Principlé(t) = S*(t), E(t) = E*(t), I(t) = I*(t),
A(t) = A*(t),H(t) = H*(t) andR(t) = R*(t), and also differentiating the Hamiltonian
(3.3) with respect t& (¢), E(t), I(t), A(t), H(t) and R(t), we obtain

COH B ui(OI + LA+ LHY)

r_ _

No=—5g = ~ (A1 = A2)
OH

Ny = ~3E = Aok — Azkp — Ar(1 — p)
OH 1—ui(t))sS*

)\g = _W =—A + W()\l — )\2) + ’Ya(l + wu2)()\3 — )\5)4‘

(A3 — Xe) (3.7)

OH 1—wui(t)l S*

)\ﬁl:—a—A:—Ag—Fﬁ( u]lv( ))1 ()\1—)\2)4‘7[(/\4—/\6)
OH 1 —wui(t)lS*

)\/5 = —a—H = —A3+ 5( u]lv( )) 2 ()\1 — )\2) +’yr()\5 - )\6)

,  OH
X = R 0.

To obtain the optimality condition (3.6), we also differiaté¢ the Hamiltoniar#{ with re-
spect tou; andus and set each of them equal to zero.

OH « SR+ 1L A*+ I H”

Oza—u1 :B1U1+ ( ]1V 2 )()\1_)\2)7
OH * *

0: a—u2 :B2U2 —|—’yawI ()\5—)\3)

Solving for the optimal controls, we obtain

o — BS*(I* + 11 A* + 1oH*) (A2 — A1)
1 - NBl )
o _ Yawl*(A3 — Xs)

U 32 .
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To determine an explicit expression for the optimal costfot0 < uj < land0 < u3 <1,
we utilized a standard optimality technique. We considerftiiowing three cases.

Case 1. Onthe sdt | 0 < uj < 1}, we haveg% =0.
1
Hence the optimal control is
ot BS*(I* + 11 A* + 1oH*) (A2 — A1)
e NB '

Case 2. On the sét | uj(t) = 0}, we haveg—H > 0.
u
This implies that !

—BS*(I* + [ A* + lgH*)(/\Q — /\1) >0
N BS*(I* + 11 A* + IoH*)(A2 — A1)
NB;

Case 3. Onthe sét | uj(t) = 1}. we haveg% <0.
1

<0 =ui(t).

This implies that
—BS*(I* + A" + ZQH*)()\Q — )\1) < -B
N BS*(I* + LW A" + 1aH*) (A2 — A1)
NB;
Combining these three cases above, we find a charactenzzftig :

" . /BS*(I*+Z1A*+Z2H*)()\2—)\1)
Uy :mln{l,max{O, NB, .
Using the same arguments, we also obtain the second optimbtfunction

awl* (A3 — A
us(t) = min{l,max{O, Ja®0 (BS 5) }}
2

> 1= ul(t).

4. NUMERICAL SIMULATIONS

The system (3.1) is solved numerically using Forward-Bakissweep Method [14] to de-
duce optimal controls; andw: that minimize the cost functional (3.2). Here, we use numer-
ical simulations to illustrate the effectiveness of opfimm@ntrols using the parameters values
mentioned in Table 1.

The effectiveness of the control measures are not alwaysah. Further, the controls
could not bel00% effective. So, the upper bounds«f andu’ were chosen to be 0.6.

To imitate the onset of the disease outbreak, we first conaidellection ofL0, 000 individ-
uals including two infected individuals. The control sceémalong with the optimal solutions
is presented in Figs. 2, 3, and 4. The horizontal axis is the theasured in days and shows
the start of the 2015 MERS-CoV outbreak in South Korea. Thelyon the left of each figure
shows the control scenario. Here, the dotted line is therabat, and the solid line is the
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TABLE 1. The description and values of parameters for the model

Parameter Description Value Refs
I3 Human-to-human transmission rate 0.0835 [15]
I Quantifies the relative transmissibility of asymptomatases 0.2 [15]
Iy Quantifies the relative transmissibility of patients 22 ][5
K Rate at which an individual leavds class by becoming infectious 1/(6.6) [8]
P The proportion of progression from clagsto I class 0.585 [5]
Ya Average rate at which symptomatic individuals hospitalize 0.6403 [5]
V1 Average recovery rate without being hospitalized iclass 1/5 [5]
Y The recovery rate of hospitalized patients

77 5]

control uj. The state variables are presented in the graph on the titgre, the dotted line
represents the state variables with control and the sol@ripresents the state variables with-
out control. The outbreak of MERS-CoV occurred in South ledrem May to July 2015, and
was completely finished by November 2015. The duration oétlidemic was about80 days
and aboutl 2, 208 individuals were quarantined.

In Fig. 2, we considered no interventioa;(= 0) only hospitalization { < 3 < 0.6). The
optimal control scenario and the corresponding solutiothefstate variableS, £, I, A, H, R

are shown on the graph, which shows almost identical cuomh& with-control and without-
control cases. It gives evidence thgtis a poor control.

0.6 T
- m—y 10000
= u* " 2000 200
= ERERRE %) —
0.4 z 2 5000 1000
*_N -
=) - 0 0 0
e - 0 100 0 100 0 100
0.2 i: 1000 10000
B < 50 T 500 & 5000
ok ’ 0 0 0
0 50 100 150 0 100 0 100 0 100

Days

FIGURE 2. The graph on the left shows the optimal control scenanidghe
hospitalization only case:{ = 0 and0 < uj < 0.6). The graphs on the right
represents population in each classf, I, A, H, R), where solid lines repre-

sent state variables without control and dashed lines septestate variables
with control.

In Fig. 3, we considered no hospitalizatiagi; (= 0) only intervention ( < uj < 0.6). The
optimal control scenario and the corresponding solutiothefstate variables are shown in the
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graph, which reveals a significant decrease in infectediahails from implementing optimal
control. It establishes thaf; has the potential to control the disease outbreak.

0.6 : : :
— U* 10000 .
1 " ) w 2000 200
* 5000 A -
trrrrrr U
Ca 0.4 > “. 1000 ,s‘ '5‘
S 0 0 0
x5 0 100 0 100 0 100
0.2 1000 10000 p
< 500 T x 4
- 500 - 5000 .
L) A ’
0 0 2 oLat* o—dlat
0 50 100 150 0 100 0 100 0 100
Days

FIGURE 3. The graph on the left shows the optimal control scenanidHe
prevention-only caseuf = 0 and0 < uj < 0.6). The graph on the right
represents the population in each claSsH, I, A, H, R), where solid lines
represent state variables without control and dashed le@esent state vari-
ables with control.

In Fig. 4, we considered both hospitalizatidh € «5 < 0.6) and intervention({ < u] <
0.6). The optimal control scenario and the corresponding mmludf the state variables are
shown in the graph which also reveals a significant decreasddcted individuals from im-
plementing optimal control. It establishes that combimaglementation of:} andu? could
also be planned to control the disease outbreak.

0.6 -
- e | 10000 g w
- 1 w ’ ,, 2000 200
- * . -
0.4 S RIS 5000 . 1000| J = "
*_N - ta - +
=) - 0 0 0
* = 0 100 0 100 0 100
0.2 - 1000 10000 p
E < 500 - o J
- ” 500 ”»” 5000 ']
= ” “ LN »
- - 0 -*
0 0 0 0
0 50 100 150 0 100 0 100 0 100
Days

FIGURE 4. The graph on the left shows the optimal control scenarid&h
prevention ( < u} < 0.6) and hospitalization()( < u5 < 0.6). The graph
on the right represents the population in each clas€(1, A, H, R), where
solid lines represent state variables without control sashdd lines represent
state variables with control.
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According to the simulation results, preventing the sprefihfection by controllingus
only is ineffective. However, the intervention to prevent dnly controlling «; as well as
intervention by both controls; andus is effective.

5. CONCLUSIONS

In this paper, we tried to replicate t2815 MERS outbreak scenario in South Korea and
suggested control strategies to reduce the outbreak. miaveneasures to reduce contact
rates and hospitalization are two candidate control measur

Qualitative analysis of optimal implementation of these t@ntrol measures was performed
using numerical tools. Our analysis shows, that hospétdéin only is not sufficient to reduce
the outbreak; rather, preventative efforts alone couldicedhe outbreak. That is, hospital-
izing infected individuals does not help to prevent the agref infection after MERS-CoV
has occurred. It is more effective for the infected persoavimid contact from outside than
to be hospitalized after MERS-CoV occurred. It is worth niemihg that, in practice, self-
guarantine for a number of individuals suspected of beiqgsad to MERS-CoV in the South
Korean case had a significant effect in stopping the epidemic

APPENDIX
A. Basic Reproduction Number R.
m o (141 A+l H)
S B+ (a4 ul)
—Kkp Ya VI
F = , V= 5.1
0 —k(1 — p)E + A 1)
L 0 Yol + 7 H
[0 B BL Bl K 0 0 0
|00 o0 0 _ —Kp Yo+vr 0 O
o= 00 0 O V= —k(1—p) 0 v 0 (5.2)
0 0 0 0 0 —Ya 0
Bp_ o, Bpuls | BU—plh 5 Brals B Bl
Ya+yr ' r(va+r) I Yat+vr U v (vatyr) v
Fy-1— 0 0 0 0
0 0 0 0
0 0 0 0

Then the basic reproduction numbRy, is calculated from the dominant eigenvalue<af —:

Ro — 5’mrl1 + 1yl 1P = Yayrlip — yryrlip A yavrlap
11 (Ya + 1)
l 1—p)l
=5< P n PYalb2 +( P)1>‘

Ya + VI Tr (’Ya + ’YI) VI

(5.3)
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