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ABSTRACT. This paper presents the mathematical model for the MERS-CoV outbreak in
South Korea, and the optimal control for two intervention strategies (contact, hospitalization)
is implemented. After the MERS-CoV outbreak, hospitalizing infected individuals did not help
to prevent the spread of infection. However, the intervention to control contact was effective.
It was effective the intervention to controlling both of contact and hospitalization of infection
population.

1. INTRODUCTION

Middle East respiratory syndrome(MERS) is a viral respiratory disease caused by a novel
coronavirus (Middle East respiratory syndrome coronavirus, or MERS-CoV) that was first
identified in Saudi Arabia in 2012. MERS-CoV is a zoonotic virus; that is, it is transmitted
between animals and people. Studies have shown that humans are infected by direct or indirect
contact with infected dromedary camels [17]. Close contactbetween a person and an infected
camel appears to be necessary for the transmission of MERS-CoV. It has been suggested that
the virus could infect humans through the air [16]. Mathematical modeling for disease trans-
mission has been done by many different authors to understand the dynamic spread of disease
in humans. The case of the MERS-CoV Drosten et al [7] provide adescription of a fatal case
of MERS-CoV infection and associated phylogenetic analyses. Guery et al [9] analyzed the
clinical features of infected cases, and Memish et al [12] and Al-Tawfiq et al [1] described the
epidemiological data in terms of family clusters and hospitalized patient, respectively.
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After MERS was first reported in Saudi Arabia in 2012, an outbreak of Middle East respi-
ratory syndrome coronavirus occurred in South Korea from May to July 2015. The number of
patients with MERS-CoV increased explosively in several hospitals in South Korea that were
not familiar with the symptoms of MERS. For Koreans, the prevalence of the infection was
shocking, because South Korea has advanced medical and public health systems. However,
some of hospitals became part of the route of the infection, even though the hospitals were
advanced medical centers. The best description of MERS-CoVin South Korea is presented
by Korea Centers for Disease Control and Prevention [11], although it was briefly mentioned
by Chowell et al [4] and Cho and Chu [2]. [15] formulated a mathematical model for MERS
transmission dynamics and estimating transmission rates.They estimated the basic reproduc-
tion number using the estimates of the transmission rates, in the first two periods.

Our aim is to minimize the MERS-CoV transmission. We presenta mathematical model
for the dynamics of MERS-CoV transmission, including an asymptomatic class, as well as
strategies to reduce infections by means of two mechanisms:reducing the close contact rate
and increasing the hospitalized cases.

Numerical simulations show control strategies for MERS-CoV transmission in South Korea.
In Section 2, we formulate a mathematical model, and Section4 presents numerical results
based on optimal control of the spread in Section 3. Conclusions are presented in the final
section.

2. MATHEMATICAL MODELING

Our model of MERS-CoV transmission is based on the model in Yunhwan et al [15] and
Chowell et al [3], and deals with the outbreak in South Korea.

The model uses six epidemiological classes. Each individual is in one of the six classes.
The classes are: susceptibleS, exposed (or high-risk latent)E, symptomatic and infectiousI,
infected but asymptoticA, hospitalizedH, and recoveredR. It is assumed that only infectious
and hospitalized individuals can infect others and asymptomatic individuals also can.
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FIGURE 1. A transmission diagram of individuals in the different epidemio-
logical classes in our model.
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In Chowell et al [3], the actual data of the zoonotic cases were gathered so they were able
to take secondary cases as well as index cases into account. The model of [15] considered
a MERS-CoV model without the zoonotic case. Meanwhile, we added the susceptible class
and infection but asymptotic classA to the model [15] because asymptomatic individuals can
infect susceptible people. With the given assumptions and the illustration in Fig. 1, we obtain
the following six-dimensional system of nonlinear differential equations;

dS

dt
= −β

(I + l1A+ l2H)

N
S,

dE

dt
= β

(I + l1A+ l2H)

N
S − κE,

dI

dt
= κρE − (γa + γI)I,

dA

dt
= κ(1 − ρ)E − γIA,

dH

dt
= γaI − γrH,

dR

dt
= γII + γrH + γIA.

(2.1)

WhereN = S + E + I +A+H +R.
Hereβ is the human-to-human transmission rate per unit of time,l1 and l2 quantify the

relative transmissibility of infection by the asymptomatic class and hospitalized patients, re-
spectively;κ is the rate at which an individual leaves the exposed class bybecoming infectious
(symptomatic or asymptomatic);ρ is the proportion of progression from exposed classE to
symptomatic infectious classI, and(1 − ρ) is that of progression to asymptomatic classA;
γa is the average rate at which symptomatic individuals are hospitalized andγI is the recovery
rate without being hospitalized;γr is the recovery rate of hospitalized patients.

The variable domain of the model is

Ω = {(S,E, I,A,H,R) ∈ R
6|S,E, I,A,H,R ≥ 0}.

All parameters used in the model;β, l1, l2, κ, ρ, 1− ρ, γa, γr andγI are positive. It can be ver-
ified thatΩ is a positively invariant set with respect to the model. The model (2.1) has two equi-
librium points which are given by(S,E, I,A,H,R) = (0, 0, 0, 0, 0, 0) and(S,E, I,A,H,R) =
(S, 0, 0, 0, 0, R).

For the prevalence of the disease, the basic reproductive number tells us whether the disease
will persist or disappear, so we consider the basic reproductive number.

2.1. Basic Reproductive Number. The dynamic behavior of the model can be classified by
the basic reproductive number. This threshold condition determines whether an infectious dis-
ease will spread in a susceptible population when the disease is introduced into the population
[10]. The threshold is calculated by using the spectral radius of a next-generation (infection)
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matrix of a model [6]. It is given mathematically as

R0 = ρ(FV −1),

whereρ is defined as the spectral radius of the next- generation matrix FV −1. F is the rate of
appearance of new infections in classi, andV is the transfer of individuals out of classi by all
other means. Then, we find the Jacobian matrix ofF(x) andV(x), and denoteF = [∂Fi/∂xj ]
and V = [∂Vi/∂xj ] evaluated at the disease free equilibrium pointE0, which consists of
S = N. From the spectral radius, we getR0 as following;

R0 = β

(

ρ

γa + γI
+

ργal2
γr(γa + γI)

+
(1− ρ)l1

γI

)

(2.2)

As shown in (2.2), the basic reproductive number of system (2.1) depends on parameters
β, l1, l2, γr, ρ, γI , andγa. The disease-free equilibrium point will be locally asymptomatically
stable iffR0 < 1. The basic reproductive numberR0 measures how quickly a disease spreads
in its initial phase as well as predicts whether a disease will become endemic or whether it will
die out.

Sensitivity indices allow us to measure the relative changein a variable when a parameter
changes. By the useR0, the sensitivities are parameters;β, γa, i.e,

Sβ =
∂R0

∂β

β

R0
= 1,

Sγa =
∂R0

∂γa

γa
R0

=
γaρ(γI l2− 1

(γa+γI)2
)

ρ
(γa+γI)

− l2(ρ−1)
γI

+ (γal2ρ)
γr(γa+γI)

.

The value ofR0 could be reduced by reducingβ and increasingγa.
The application of control measures changes of some parameter values in the model; more-

over we would need to know the effects that the changes produce onR0 for control. The
control variables0 ≤ u1(t) ≤ 1 and0 ≤ u2(t) ≤ 1 represent the amount of intervention at
time t to reduce the contact rateβ and to increase hospitalizationγa.

Since the infection shapes a large cluster in a hospital, we consider the parameters related to
hospital and contact with asymptomatic classes.

3. MERS-COV OPTIMAL CONTROL ANALYSIS

For the outbreak of MERS-CoV in South Korea, the infection shapes a large cluster in a
hospital. Tracing the movements of patients at a South Korean hospital has helped identify
how the Middle East Respiratory Syndrome (MERS) virus was transmitted from a patient to
individuals(including patients, visitors and health-care workers) in an overcrowded emergency
room. In this section, we carry out optimal control analysiswhich focuses on the two inter-
vention strategies(contact, hospitalization) considered in the model (3.1). The idea of adding
control terms was inspired by the model of Y. Kim et al [15].

Now we formulate an optimal control problem for the transmission dynamics of MERS-CoV
in South Korea. We add control terms to the our model (2.1). The model (2.1) is re-formulated
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as an optimal control problem as follows;

dS

dt
= −β(1− u1(t))

(I + l1A+ l2H)

N
S,

dE

dt
= β(1− u1(t))

(I + l1A+ l2H)

N
S − κE,

dI

dt
= κρE − γII − γa(1 + ωu2(t))I,

dA

dt
= κ(1− ρ)E − γIA,

dH

dt
= γa(1 + ωu2(t))I − γrH,

dR

dt
= γII + γrH + γIA.

(3.1)

The control variableu1(t) represents the number of interventions needed to reduce thecon-
tact rate at timet. After control, the contact rate is(1− u1(t)) whereu1(t) measures the level
of successful prevention efforts. The control variableu2(t) represents efforts to increase the
hospitalization rate. It is assumed that the hospitalization rate increases at a rate proportional
to u2(t) and whereω is a rate constant.

We show that it is possible to implement time dependent control u1(t) andu2(t) while
minimizing the cost of implementation of such control measures.

We define the set of admissible controls as follows;

U = {(u1(t), u2(t))|u1(t), u2(t) are Lebesgue measurable on[0, T ], 0 ≤ u1(t), u2(t) ≤ 1}

whereT is the final time.
Focusing the optimal control problem on minimizing the number of contacts and hospital-

ized individuals the problem reduces to minimizing the costfunctional. To specify the cost, we
define the cost functional as

J(u1, u2) =

∫ T

0

{

A1I(t) +A2A(t) +A3H(t) +
B1

2
u21(t) +

B2

2
u22(t)

}

dt (3.2)

subject to the differential equations (3.1).
In the objective functional the quantitiesA1, A2, andA2 represent the weight constants

of the symptomatic infectious class, asymptomatic class, and hospitalized individuals, respec-
tively. In the objective functional, the weight coefficientsB1 andB2 are constants that represent
cost. The terms12B1u

2
1 and 1

2B2u
2
2 describe the costs associated with the transmission by con-

tact rate with the susceptible individuals and hospitalization for minimizing the symptomatic
infectious individuals, respectively.

3.1. Existence of an Optimal Control. The necessary condition, to be satisfied by the control
and the corresponding states, is derived using Pontryagin’s Maximum Principle [13]. Using the
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differential equation of the state variable of the model (3.1), the Hamiltonian is given by:

H(X(t),U(t),Λ(t))

=A1I(t) +A2A(t) +A3H(t) +
B1

2
u21(t) +

B2

2
u22(t) +Λ(t)

(

dX(t)

dt

)T

=A1I(t) +A2A(t) +A3H(t) +
B1

2
u21(t) +

B2

2
u22(t)

+ λ1

{

−β(1− u1(t))
(I + l1A+ l2H)

N
S

}

+ λ2

{

β(1 − u1(t))
(I + l1A+ l2H)

N
S − κE

}

+ λ3 {κρE − γII − γa(1 + ωu2)I}
+ λ4 {κ(1− ρ)E − γIA}
+ λ5 {γa(1 + ωu2(t))I − γrH}
+ λ6 {γII + γrH + γIA} ,

(3.3)

whereλj(j = 1, 2, ..., 6) are the adjoint variables and the state variables for the population
dynamics are denoted byX(t) = (S(t), I(t), E(t), A(t),H(t), R(t)), the existence of which
is guaranteed by the Pontryagin’s Maximum Principle [14].

Our goal is to find optimal controlsu∗1(t) andu∗2(t) such that

J(u∗1, u
∗

2) = min{J(u1, u2)|(u1, u2) ∈ U}. (3.4)

Such optimal control functionsu∗1 andu∗2 exist and the optimality system can be derived, and
which satisfy conditions summarized in the following theorem:

Theorem 3.1. LetS∗(t), E∗(t), I∗(t), A∗(t),H∗(t) andR∗(t) be optimal state solutions with
associated optimal control variablesu∗1 andu∗2 for the optimal control problem (3.1) and (3.2),
then there exists an adjoint variableΛ(t) = (λ1(t), λ2(t), λ3(t), λ4(t), λ5(t), λ6(t)) that sat-
isfies

λ′

1 =
β(1− u1(t))(I + l1A+ l2H)

N
(λ1 − λ2)

λ′

2 = λ2κ− λ3κρ− λ4κ(1− ρ)

λ′

3 = −A1 +
β(1− u1(t))S

N
(λ1 − λ2) + γa(1 + ωu2)(λ3 − λ5)+

γI(λ3 − λ6)

λ′

4 = −A2 +
β(1− u1(t))l1S

N
(λ1 − λ2) + γI(λ4 − λ6)

λ′

5 = −A3 +
β(1− u1(t))l2S

N
(λ1 − λ2) + γr(λ5 − λ6)

λ′

6 = 0

(3.5)
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with transversality conditions (or boundary conditions)

λj(T ) = 0, j = 1, 2, ..., 6.

Furthermore, the optimal controlsu∗1 andu∗2 are given by

u∗1(t) = min

{

1,max

{

0,
βS∗(I∗ + l1A

∗ + l2H
∗)(λ2 − λ1)

NB1

}}

,

u∗2(t) = min

{

1,max

{

0,
γaωI

∗(λ3 − λ5)

B2

}}

.

(3.6)

Proof. To determine the adjoint equations and the transversality conditions, we use the Hamil-
tonian (3.3). By Pontryagin’s Maximum Principle,S(t) = S∗(t), E(t) = E∗(t), I(t) = I∗(t),
A(t) = A∗(t),H(t) = H∗(t) andR(t) = R∗(t), and also differentiating the Hamiltonian
(3.3) with respect toS(t), E(t), I(t), A(t),H(t) andR(t), we obtain

λ′

1 = −∂H
∂S

=
β(1 − u∗1(t)(I

∗ + l1A
∗ + l2H

∗)

N
(λ1 − λ2)

λ′

2 = −∂H
∂E

= λ2κ− λ3κρ− λ4κ(1− ρ)

λ′

3 = −∂H
∂I

= −A1 +
β(1− u∗1(t))S

∗

N
(λ1 − λ2) + γa(1 + ωu2)(λ3 − λ5)+

γI(λ3 − λ6)

λ′

4 = −∂H
∂A

= −A2 +
β(1− u∗1(t))l1S

∗

N
(λ1 − λ2) + γI(λ4 − λ6)

λ′

5 = −∂H
∂H

= −A3 +
β(1− u∗1(t))l2S

∗

N
(λ1 − λ2) + γr(λ5 − λ6)

λ′

6 = −∂H
∂R

= 0.

(3.7)

To obtain the optimality condition (3.6), we also differentiate the HamiltonianH with re-
spect tou1 andu2 and set each of them equal to zero.

0 =
∂H
∂u1

= B1u
∗

1 +
S∗β(I∗ + l1A

∗ + l2H
∗)

N
(λ1 − λ2),

0 =
∂H
∂u2

= B2u
∗

2 + γaωI
∗(λ5 − λ3).

Solving for the optimal controls, we obtain

u∗1 =
βS∗(I∗ + l1A

∗ + l2H
∗)(λ2 − λ1)

NB1
,

u∗2 =
γaωI

∗(λ3 − λ5)

B2
.
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To determine an explicit expression for the optimal controls for0 ≤ u∗1 ≤ 1 and0 ≤ u∗2 ≤ 1,
we utilized a standard optimality technique. We consider the following three cases.

Case 1. On the set{t | 0 < u∗1 < 1}, we have
∂H
∂u1

= 0.

Hence the optimal control is

u∗1 =
βS∗(I∗ + l1A

∗ + l2H
∗)(λ2 − λ1)

NB1
.

Case 2. On the set{t | u∗1(t) = 0}, we have
∂H
∂u1

≥ 0.

This implies that
−βS∗(I∗ + l1A

∗ + l2H
∗)(λ2 − λ1) ≥ 0

⇒ βS∗(I∗ + l1A
∗ + l2H

∗)(λ2 − λ1)

NB1
≤ 0 = u∗1(t).

Case 3. On the set{t | u∗1(t) = 1}. we have
∂H
∂u1

≤ 0.

This implies that
−βS∗(I∗ + l1A

∗ + l2H
∗)(λ2 − λ1) ≤ −B1

⇒ βS∗(I∗ + l1A
∗ + l2H

∗)(λ2 − λ1)

NB1
≥ 1 = u∗1(t).

Combining these three cases above, we find a characterization of u∗1:

u∗1 = min

{

1,max

{

0,
βS∗(I∗ + l1A

∗ + l2H
∗)(λ2 − λ1)

NB1

}}

.

Using the same arguments, we also obtain the second optimal control function

u∗2(t) = min

{

1,max

{

0,
γaωI

∗(λ3 − λ5)

B2

}}

.

�

4. NUMERICAL SIMULATIONS

The system (3.1) is solved numerically using Forward-Backward Sweep Method [14] to de-
duce optimal controlsu∗1 andu∗2 that minimize the cost functional (3.2). Here, we use numer-
ical simulations to illustrate the effectiveness of optimal controls using the parameters values
mentioned in Table 1.

The effectiveness of the control measures are not always thesame. Further, the controls
could not be100% effective. So, the upper bounds ofu∗1 andu∗2 were chosen to be 0.6.

To imitate the onset of the disease outbreak, we first consider a collection of10, 000 individ-
uals including two infected individuals. The control scenario along with the optimal solutions
is presented in Figs. 2, 3, and 4. The horizontal axis is the time measured in days and shows
the start of the 2015 MERS-CoV outbreak in South Korea. The graph on the left of each figure
shows the control scenario. Here, the dotted line is the control u∗2 and the solid line is the
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TABLE 1. The description and values of parameters for the model

Parameter Description Value Refs
β Human-to-human transmission rate 0.0835 [15]
l1 Quantifies the relative transmissibility of asymptomatic class 0.2 [15]
l2 Quantifies the relative transmissibility of patients 22 [15]
κ Rate at which an individual leavesE class by becoming infectious 1/(6.6) [8]
ρ The proportion of progression from classE to I class 0.585 [5]
γa Average rate at which symptomatic individuals hospitalize 0.6403 [5]
γI Average recovery rate without being hospitalized inI class 1/5 [5]
γr The recovery rate of hospitalized patients 1/7 [5]

control u∗1. The state variables are presented in the graph on the right.Here, the dotted line
represents the state variables with control and the solid line represents the state variables with-
out control. The outbreak of MERS-CoV occurred in South Korea from May to July 2015, and
was completely finished by November 2015. The duration of theepidemic was about180 days
and about12, 208 individuals were quarantined.

In Fig. 2, we considered no intervention (u∗1 = 0) only hospitalization (0 ≤ u∗2 ≤ 0.6). The
optimal control scenario and the corresponding solution ofthe state variablesS,E, I,A,H,R
are shown on the graph, which shows almost identical curves for the with-control and without-
control cases. It gives evidence thatu∗2 is a poor control.
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FIGURE 2. The graph on the left shows the optimal control scenario for the
hospitalization only case (u∗1 = 0 and0 ≤ u∗2 ≤ 0.6). The graphs on the right
represents population in each class(S,E, I,A,H,R), where solid lines repre-
sent state variables without control and dashed lines represent state variables
with control.

In Fig. 3, we considered no hospitalization (u∗2 = 0) only intervention (0 ≤ u∗1 ≤ 0.6). The
optimal control scenario and the corresponding solution ofthe state variables are shown in the
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graph, which reveals a significant decrease in infected individuals from implementing optimal
control. It establishes thatu∗1 has the potential to control the disease outbreak.
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FIGURE 3. The graph on the left shows the optimal control scenario for the
prevention-only case (u∗2 = 0 and0 ≤ u∗1 ≤ 0.6). The graph on the right
represents the population in each class (S,E, I,A,H,R), where solid lines
represent state variables without control and dashed linesrepresent state vari-
ables with control.

In Fig. 4, we considered both hospitalization (0 ≤ u∗2 ≤ 0.6) and intervention (0 ≤ u∗1 ≤
0.6). The optimal control scenario and the corresponding solution of the state variables are
shown in the graph which also reveals a significant decrease in infected individuals from im-
plementing optimal control. It establishes that combined implementation ofu∗1 andu∗2 could
also be planned to control the disease outbreak.
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FIGURE 4. The graph on the left shows the optimal control scenario for both
prevention (0 ≤ u∗1 ≤ 0.6) and hospitalization (0 ≤ u∗2 ≤ 0.6). The graph
on the right represents the population in each class (S,E, I,A,H,R), where
solid lines represent state variables without control and dashed lines represent
state variables with control.
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According to the simulation results, preventing the spreadof infection by controllingu2
only is ineffective. However, the intervention to prevent by only controlling u1 as well as
intervention by both controlsu1 andu2 is effective.

5. CONCLUSIONS

In this paper, we tried to replicate the2015 MERS outbreak scenario in South Korea and
suggested control strategies to reduce the outbreak. Preventive measures to reduce contact
rates and hospitalization are two candidate control measures.

Qualitative analysis of optimal implementation of these two control measures was performed
using numerical tools. Our analysis shows, that hospitalization only is not sufficient to reduce
the outbreak; rather, preventative efforts alone could reduce the outbreak. That is, hospital-
izing infected individuals does not help to prevent the spread of infection after MERS-CoV
has occurred. It is more effective for the infected person toavoid contact from outside than
to be hospitalized after MERS-CoV occurred. It is worth mentioning that, in practice, self-
quarantine for a number of individuals suspected of being exposed to MERS-CoV in the South
Korean case had a significant effect in stopping the epidemic.

APPENDIX

A. Basic Reproduction Number R0.

F =









β (I+l1A+l2H)
N

S
0
0
0









, V =









κE
−κρE + (γa + γII)
−κ(1− ρ)E + γIA

−γaI + γrH









(5.1)

F =









0 β βl1 βl2
0 0 0 0
0 0 0 0
0 0 0 0









, V =









κ 0 0 0
−κρ γa + γI 0 0

−κ(1− ρ) 0 γI 0
0 −γa 0 γr









(5.2)

FV −1 =









βρ
γa+γI

+ βργal2
γr(γa+γI)

+ β(1−ρ)l1
γI

β
γa+γI

+ βγal2
γr(γa+γI)

βl1
γr

βl2
γr

0 0 0 0
0 0 0 0
0 0 0 0









Then the basic reproduction number,R0, is calculated from the dominant eigenvalue ofFV −1:

R0 = β
γaγrl1 + γIγrl1 + γIγrρ− γaγrl1ρ− γIγrl1ρ+ γaγI l2ρ

γIγr(γa + γI)

= β

(

ρ

γa + γI
+

ργal2
γr(γa + γI)

+
(1− ρ)l1

γI

)

.

(5.3)
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