DOI QR코드

DOI QR Code

Proposition of a Vibration Based Acceleration Sensor for the Fully Implantable Hearing Aid

완전 이식형 보청기를 위한 진동 기반의 가속도 센서 제안

  • 신동호 (경북대학교 의공학연구소 리서치펠로우) ;
  • 문하준 (경북대학교 대학원 전자공학부) ;
  • 성기웅 (경북대학교병원 의공학과) ;
  • 조진호 (경북대학교 IT대학 전자공학부)
  • Received : 2017.03.28
  • Accepted : 2017.04.19
  • Published : 2017.05.31

Abstract

The hybrid acoustic sensor for implantable hearing aid has the structure in which a sound pressure based acoustic sensor (ECM) and a vibration based acceleration sensor are combined. This sensor combines the low frequency sensitivity of an acoustic sensor with the high frequency sensitivity of an acceleration sensor, allowing the acquisition of a wide range of sound from low to high frequency. In this paper, an acceleration sensor for use in a hybrid acoustic sensor has been proposed. The acceleration sensor captures the vibration of the tympanic membrane generated by the acoustic signal. The size of the proposed acceleration sensor was determined to diameter of 3.2 mm considering the anatomical structure of the tympanic membrane and the standard of ECM. In order to make the hybrid acoustic sensor have high sensitivity and wide bandwidth characteristics, the aim of the resonance frequency of the acceleration sensor is to be generated at about 3.5 kHz. The membrane of the acceleration sensor derives geometric structure through mathematical model and finite element analysis. Based on the analysis results, the membrane was implemented through a chemical etching process. In order to verify the frequency characteristics of the implemented membrane, vibration measurement experiment using external force was performed. The experiment results showed mechanical resonance of the membrane occurred at 3.4 kHz. Therefore, it is considered that the proposed acceleration sensor can be utilized for a hybrid acoustic sensor.

하이브리드 음향센서 (hybrid acoustic sensor)는 음압 기반의 음향센서 (ECM)와 진동 기반의 가속도 센서(acceleration sensor)가 접목된 구조이다. 이는 음향센서의 저주파 대역 감도와 가속도 센서의 고주파 대역 감도를 결합하여 저주파에서 고주파 대역까지 광범위하게 음향을 포집할 수 있다. 본 논문에서는 하이브리드 음향센서에 사용되는 가속도 센서를 제안하였다. 가속도 센서는 음향신호에 의해 발생되는 고막의 진동을 포집한다. 제안된 가속도 센서의 사이즈는 고막의 해부학적 구조와 음향센서인 ECM의 규격을 고려하여 직경 3.2 mm로 결정하였다. 그리고 하이브리드 음향센서가 고감도 광대역 특성을 가지도록 하기 위해서는 가속도 센서의 공진 주파수는 3.5 kHz 부근에서 생성되는 것을 목표로 하였다. 가속도 센서를 구성하는 진동막은 수학적 모델과 유한요소 해석을 통하여 기하학적 구조를 도출하였다. 이를 바탕으로 화학적 식각공정을 이용하여 진동막을 제작하였다. 그리고 제작된 진동막의 주파수 특성을 확인하기 위하여 외력에 의한 진동 측정 실험을 수행하였고, 실험 결과 진동막의 기계적 공진은 3.4 kHz에서 발생되었다. 그러므로 제안한 가속도 센서는 하이브리드 음향센서에 유용하게 활용될 수 있을 것으로 판단된다.

Keywords

References

  1. H. H. Kim and D. M. Barrs, "Hearing aids: a review of what's new," Otolaryngology-Head and Neck Surgery, vol. 134, issue 6, pp. 1043-1050, 2006. https://doi.org/10.1016/j.otohns.2006.03.010
  2. M. C. Pollack and R. Carhart, Amplification for the Hearing Impaired, Grune & Stratton Incorporation, Orlando, USA, 1988.
  3. R. L. Goode, M. L. Rosenbaum and A. J. Maniglia, "The history and development of the implantable hearing aid," The Otolaryngologic Clinics of North America, vol. 28, no. 1, pp. 1-16, 1995.
  4. U. Fisch, C. W. Cremers, T. Lenarz, B. Weber, G. Babighian, A. S. Uziel, D. W. Proops, A. F. O'Connor, R. Charachon, J. Helms and B. Fraysse, "Clinical experience with the Vibrant Soundbridge implant device," Otology and Neurotology, vol. 22, no. 6, pp. 962-972, 2001. https://doi.org/10.1097/00129492-200111000-00042
  5. D. S. Haynes, J. A. Young, G. B. Wanna and M. E. Glasscock, "Middle ear of implantable hearing devices: An overview," Trends in Amplification, vol. 13, no. 3, pp. 206-214, 2009. https://doi.org/10.1177/1084713809346262
  6. H. A. Jenkins, J. K. Niparko, W. H. Slattery, J. G. Neely and J. M. Fredrickson, "Otologics middle ear transducer ossicular stimulator: performance results with varying degrees of sensorineural hearing loss," Acta Oto-laryn gologica, vol. 124, no. 4, pp. 391-394, 2004. https://doi.org/10.1080/00016480410016298
  7. J. H. Kim, D. H. Shin, K. W. Seong and J. H. Cho, "Design of Signal Processing Circuit for Semi-implantable Middle Ear Hearing Device with Bellows Transducer," Journal of Rehabilitation Welfare Engineering and Assistive Technology, vol. 11, no. 1, pp. 63-71, 2017. https://doi.org/10.21288/RESKO.2017.11.1.63
  8. M. J. Osberger, R. T. Miyamoto, S. Zimmerman Phillips, J. L. Kemink, B. S. Stroer, J. S. Firszt and M. A. Novak, "Independent evaluation of the speech perception abilities of children with the Nucleus 22-channel cochlear implant system," Ear and Hearing, vol. 12, no. 4, pp. 66-80, 1991. https://doi.org/10.1097/00003446-199108001-00009
  9. J. H. Cho, I. Y. Park and S. H. Lee, "Development of fully implantable middle ear hearing devices with differential floating mass transducer: current status," Journal of Biomedical Engineering Research, vol. 26, no. 5, pp. 309-317, 2005.
  10. E. M. Kraus, J. A. Shohet and P. J. Catalano, "Envoy Esteem totally implantable hearing system: Phase 2 trial, 1-year hearing results", American Academy of Otolaryngology-Head and Neck Surgery, vol. 145, no. 1, pp. 100-109, 2011.
  11. S. T. Woo, D. H. Shin, H. G. Lim, K. W. Seong, P. Gottlieb, S. Puria, K. Y. Lee and J. H. Cho, "A New Trans-Tympanic Microphone Approach for Fully Implantable Hearing Devices," Sensors, vol. 15, no. 9, pp. 22798-22810, 2015. https://doi.org/10.3390/s150922798
  12. H. Leysieffer, J. W. Baumann, R. Mayer, D. Muler, G. Muler, T. Schon, A. Volz and H. P. Zenner, "A totally implantable hearing device for the treatment of sensorineural hearing loss: TICA LZ 3001," HNO, vol. 46, no. 10, pp. 853-863, 1998. https://doi.org/10.1007/s001060050325
  13. J. Pulcherio, A. Bittencourt and R. Bento, "Carina(R) and Esteem(R): A systematic review of fully implantable hearing devices," PLOSONE, vol. 9, no. 10, pp. 1-8, 2014.
  14. W. Ko, R. Zhang and C. Megerian, "Studies of MEMS acoustic sensors as implantable microphones for totally implantable hearing-aid Systems," IEEE Transactions on Biomedical Engineering, vol. 3, no. 5, pp. 277-285, 2009.
  15. http://www.pathologyoutlines.com.
  16. E. A. G. Shaw and M. M. Vaillancourt, "Transformation of sound-pressure level from the free field to the eardrum presented in numerical form." Journal of Acoustical Society of America, vol. 78, no. 3, pp. 1120-1123, 1985. https://doi.org/10.1121/1.393035
  17. B. Balachandran and E. B. Magrab, Vibrations, Thomson West, USA, 2009.