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THE AP-HENSTOCK INTEGRAL OF VECTOR-VALUED

FUNCTIONS

Ju Han Yoon*

Abstract. In this paper we introduce AP-Henstock integral of
vector valued functions which is a generalization of Henstock inte-
gral of vector valued functions, investigate some of its properties,
and characterize AP-Henstock integral of vector valued functions
by the notion of equiintegrability.

1. Introduction and preliminaries

In 2003, Luisa Di Piazza investigated some properties concerning
Henstock type integrals for vector valued functions, started in [1] and
[2]. Yoon, Park, Kim, and Kim([10]) introduced the AP-Henstock ex-
tension of Dunford , Pettis, and Bochner integrals of functions mapping
an interval [a, b] into Banach space X and proved some properties of
these integrals.

In this paper we introduce AP-Henstock integral of vector valued
functions which is a generalization of Henstock integral of vector val-
ued functions and investigate some of its properties. In particular we
characterize AP-Henstock integral of vector valued functions by the no-
tion of equiintegrability and study the absolute integrability of the AP-
Henstock integrable functions.

Let E be measurable set and let c be a real number. The density of
E at c is defined by

dcE = lim
h→0+

µ (E ∩ (c− h, c+ h))
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provided the limit exists. The point c is called a point of density of E if
dcE = 1.

An approximate neighborhood (or ap-nbd) of x ∈ [a, b] is a mea-
surable set Sx ⊂ [a, b] containing x as a point of density. For every
x ∈ E ⊂ [a, b], choose an ap-nbd Sx ⊂ [a, b] of x. Then we say that
∆ = {Sx : x ∈ E} is a choice on E. A tagged interval (x, [c, d])
is said to be subordinate to the choice ∆ = {Sx} if c, d ∈ Sx. Let
P = {(xi, [ci, di]) : 1 ≤ i ≤ n} be a finite collection of non-overlapping
tagged intervals. If (xi, [ci, di]) is subordinate to the choice ∆ for each i,
then we say that P is subordinate to the choice ∆. If P is subordinate
to ∆ and [a, b] = ∪n

i=1[ci, di], we say that P is a tagged partition of
[a, b] that is subordinate to ∆. Let E ⊂ [a, b]. If P is subordinate to ∆
and each xi ∈ E, P is called E- subordinate to ∆. For a tagged parti-
tion P = {(xi, [ci, di]) : 1 ≤ i ≤ n} of [a, b], we will use the following
notation.

S(f,P) =

n∑
i=1

f(xi)(di − ci).

Throughout this paper X, Y will denote real Banach spaces and X∗ its
dual. The closed unit ball of X∗ will be denoted by B(X∗).

2. AP-Henstock integral of vector-valued functions

Definition 2.1. A function f : [a, b] −→ X is AP-Henstock inte-
grable on [a, b] if there exists a vector L ∈ X with the following property :
for each ϵ > 0 there exists a choice∆ on [a, b] such that ∥S(f,P)−L∥ < ϵ
whenever P is a tagged partition of [a, b] that is subordinate to ∆. The
vector L is called the AP-Henstock integral of f on [a, b] and is denoted

by (AH)

∫ b

a
f . The function f is AP-Henstock integrable on a measur-

able subset E of [a, b] if fχE is AP-Henstock integrable on [a, b]. the
prefix (AH) will be used to distinguish this integral from others.

Theorem 2.2. Let f : [a, b] −→ X is AP-Henstock integrable on
[a, b].

(a) For each x∗ ∈ X∗ the function x∗f is AP-Henstock integrable on

[a, b] and (AH)

∫ b

a
x∗f = x∗(AH)

∫ b

a
f .
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(b) If T : X −→ Y is continuous linear operator then (AH)

∫ b

a
Tf =

T (AH)

∫ b

a
f .

Proof. (a) Let x∗ ∈ X∗. Since f : [a, b] −→ X is AP-Henstock
integrable on [a, b], for each ϵ > 0 there exists a choice ∆ on [a, b] such
that

∥S(f,P)− (AH)

∫ b

a
f∥ <

ϵ

∥x∗∥
whenever P is a tagged partition of [a, b] that is subordinate to ∆. Hence
we have

∥S(x∗f,P)− x∗(AH)

∫ b

a
f∥ ≤ ∥x∗∥∥S(f,P)− (AH)

∫ b

a
f∥ < ϵ.

Therefore x∗f is AP-Henstock integrable on [a, b] and (AH)

∫ b

a
x∗f =

x∗(AH)

∫ b

a
f .

(b) Since T : X −→ Y is continuous linear operator, there exists a
number M > 0 such that ∥Tx∥ ≤ M∥x∥ for all x ∈ X. Also since f is
AP-Henstock integrable on [a, b], for each ϵ > 0 there exists a choice ∆
on [a, b] such that

∥S(f,P)− (AH)

∫ b

a
f∥ <

ϵ

M

whenever P is a tagged partition of [a, b] that is subordinate to ∆. Hence
we have

∥S(Tf,P)− T (AH)

∫ b

a
f∥ ≤ M∥S(f,P)− (AH)

∫ b

a
f∥ < ϵ.

The following Theorem 2.3 (a) can easily be obtained from the Definition
2.1 and Theorem 2.2 (a).

Theorem 2.3. Let f : [a, b] −→ X is AP-Henstock integrable on
[a, b]. Then

(a) f is weakly measurable.
(b) If f = g almost everywhere on [a, b], then g is AP-Henstock inte-

grable on [a, b] and (AH)

∫ b

a
f = (AH)

∫ b

a
g.
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Proof. It is sufficient to prove (b) that if f = 0( the zero of X )
almost everywhere on [a, b], then f is AP-Henstock integrable on [a, b]

and (AH)

∫ b

a
f = 0. Since ∥f∥ = 0 almost everywhere on [a, b], ∥f∥ is

AP-Henstock integrable on [a, b] and (AH)

∫ b

a
∥f∥ = 0. For any ϵ > 0,

there is a choice ∆ on [a, b] such that ∥f∥(P) < ϵ whenever P is a tagged
partition of [a, b] that is subordinate to ∆. Let P be a tagged partition
of [a, b] that is subordinate to ∆, then

∥f(P)− 0∥ = ∥f(P)∥ ≤ ∥f∥(P) < ϵ.

Hence, f is AP-Henstock integrable on [a, b] and (AH)

∫ b

a
f = 0.

Definition 2.4. A function f : [a, b] −→ X is said to be scalarly
AP-Henstock integrable on [a, b] if for each x∗ in X∗ the function x∗f
is AP-Henstock integrable on [a, b]. If f is AP-Henstock integrable on
[a, b] and for every interval I in [a, b] there exists a vector LI ∈ X such

that x∗(LI) =

∫
I
x∗f for all x∗ in X∗, then f is AP-Henstock-Pettis

integrable on [a, b] and set LI = (AHP )

∫
I
f . We denote the set of all

AP-Henstock integrable functions f : [a, b] −→ X by AH([a, b], X).

Remark 2.5. By (a) of Theorem 2.2, it follows that each AP-Henstock
integrable function is also AP-Henstock-Pettis integrable. But the re-
verse implication is not true ([9]).

Definition 2.6. A falmily A ⊂ AH([a, b], X) is AP-Henstock equi-
integrable on [a, b] if for each ϵ > 0, there exists a choice ∆ on [a, b] such
that

sup
f∈A

∥S(f,P)− (AH)

∫ b

a
f∥ < ϵ

whenever P is a tagged partition of [a, b] that is subordinate to ∆.

Using the notion of AP-Henstock equiintegrability, we may charac-
terize the vector valued AP-Henstock integrable functions.

Theorem 2.7. A function f : [a, b] −→ X is AP-Henstock integrable
on [a, b] if and only if the family {x∗f : x∗ ∈ B(X∗)} is AP-Henstock
equiintegrable on [a, b].
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Proof. Let f : [a, b] −→ X is AP-Henstock integrable on [a, b]. For
each ϵ > 0, there exists a choice ∆ on [a, b] such that ∥S(f,P) −
(AH)

∫ b
a f∥ < ϵ whenever P is a tagged partition of [a, b] that is subor-

dinate to ∆. Because

∥S(f,P)− (AH)

∫ b

a
f∥ = sup

x∗∈B(X∗)
|S(x∗f,P)− x∗(AH)

∫ b

a
f |,

{x∗f : x∗ ∈ B(X∗)} is AP-Henstock equiintegrable on [a, b]. Con-
versely, it is sufficient to show that there exists L ∈ X such that

x∗(L) = (AH)
∫ b
a x∗f for all x∗ inX∗. Define Tf : X∗ −→ R by Tf (x

∗) =

(AH)

∫ b

a
x∗f . For each α ∈ R, let Q(α) = {x∗ ∈ X∗ : Tf (x

∗) ≤ α},

then we claim that Q(α) is w∗-closed. Since Q(α) is convex, according to
the Banach-Dieudonne Theorem, it suffices to show that Q(α) ∩ B(X∗)
is w∗-closed.

Let x∗0 be a w∗-cluster point of Q(α) ∩ B(X∗) and let (x∗r)r∈I ⊂
Q(α) ∩ B(X∗) be a net converging to x∗0 in the w∗-topology. Since
{x∗f : x∗ ∈ B(X∗)} is AP-Henstock equiintegrable on [a, b], for each
ϵ > 0, there exists a choice ∆ on [a, b] such that

(1) sup
∥x∗∥≤1

∣∣∣∣(AH)

∫ b

a
x∗f − S(x∗f,P)

∣∣∣∣ < ϵ

whenever P is a tagged partition of [a, b] that is subordinate to ∆. Let
P = {(I1, t1), · · · , (Ip, tp)} be a tagged partition of [a, b] that is subordi-
nate to ∆. Using the convergence of (x∗r)r∈I we choose an index r0 ∈ I
such that

(2)

p∑
i=1

∣∣x∗r0f(ti)− x∗0f(ti)
∣∣ < ϵ.

Since x∗0 ∈ B(X∗), by (1) and (2) we have

Tf (x
∗
0) ≤

∣∣∣∣∣Tf (x
∗
0)−

p∑
i=1

x∗0f(ti)|Ii|

∣∣∣∣∣+
p∑

i=1

∣∣x∗0f(ti)− x∗r0f(ti)
∣∣ |Ii|

+

∣∣∣∣∣
p∑

i=1

x∗r0f(ti)|Ii| − (AH)

∫ b

a
x∗r0f

∣∣∣∣∣+ Tf (x
∗
r0)

< α+ 3ϵ.
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Since ϵ is arbitrary, x∗0 ∈ Q(α) ∩ B(X∗). Thus Tf is w∗-continuous.
Since X is the w∗-dual of X∗, there exists L ∈ X such that x∗(L) =
Tf (x

∗).

By Gordon [5, Theorem 17] and Pettis Measurability Theorem, we ob-
tains the following Theorem 2.8.

Theorem 2.8. Let X be separable. If f : [a, b] −→ X is Pettis
integrable on [a, b], then f is AP-McShane integrable on [a, b].

3. Absolute AP-Henstock integrability

Definition 3.1. A function f : [a, b] −→ X is absolute AP-Henstock
integrable on [a, b] if f and ∥f∥ are AP-Henstock integrable on [a, b].

Theorem 3.2. If f : [a, b] −→ X is absolute AP-Henstock integrable
on [a, b], f is Pettis integrable.

Proof. Since f is AP-Henstock integrable on [a, b], for each x∗ ∈
B(X∗), x∗f is measurable. Moreover ∥f∥ being AP-Henstock integrable,
by [6, Theorem 16.15 (b)], it is also Lebesgue integrable.

For every measurable set E ⊂ [a, b] and for each x∗ ∈ B(X∗), it
follows that ∫

E
|x∗f | ≤

∫
E
∥f∥ < ∞.

Thus, f is Dunford integrable. Let v(E) be its Dunford integral. If
an interval J ⊂ [a, b], the AP-Henstock integrability of f implies that
v(J) ∈ X. Fix ϵ > 0, The Lebesgue integrability of ∥f∥ implies the
existence of a positive number η > 0 such that if the Lebesgue measure

|E| < η , then

∫
E
∥f∥ < ϵ. Thus if |E| < η , we have

∥v(E)∥ = sup
x∗∈B(X∗)

∣∣∣∣∫
E
x∗f

∣∣∣∣ ≤ sup
x∗∈B(X∗)

∫
E
|x∗f | ≤

∫
E
∥f∥ < ϵ.

Therefore, the assertion follows from [2, Proposition 2B].

By Gordon [5, Theorem 17] and Theorem 3.2, we obtain the following
Corollary 3.3.

Corollary 3.3. Let f : [a, b] −→ X be a function. If X be separable
and f is absolute AP-Henstock integrable on [a, b], then f is McShane
integrable.
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Theorem 3.4. If f : [a, b] −→ X is absolute AP-Henstock integrable
on [a, b], then for any measurable subset E ⊂ [a, b] we have∥∥∥∥(P )

∫
E
f

∥∥∥∥ ≤ (AH)

∫
E
∥f∥ .

Proof. Since f is absolute AP-Henstock integrable on [a, b], By The-
orem 3.2 it is Pettis integrable. Morever for any measurable subset
E ⊂ [a, b] we have∥∥∥∥(P )

∫
E
f

∥∥∥∥ = sup
x∗∈B(X∗)

∣∣∣∣∫
E
x∗f

∣∣∣∣ ≤ sup
x∗∈B(X∗)

∫
E
|x∗f | ≤ (AH)

∫
E
∥f∥.

References

[1] S. Cao, The Henstock integral for Banach-valued functions, SEA Bull. Math.
16 (1992), 35-40.

[2] D. H. Fremlin and J. Mendoza, On the integration of vector-valued functions,
Illnois J. Math. 38 (1994), 127-147.

[3] J. L. Gamez and J. Mendoza, On Denjoy-Dunford and Denjoy-Pettis integral,
Studia Math. 130 (1998), 115-133.

[4] R. A. Gordon, The Denjoy extension of the Bochner, Pettis, and Dunford in-
tegrals, Studia Math. 92 (1989), 73-91.

[5] R. A. Gordon, The McShane integral of Banach-valued functions, Illnois J.
Math. 34 (1990), 556-567.

[6] R. A. Gordon, The Integrals of Lebesgue, Denjoy, Perron, and Henstock, Amer.
Math. Soc. 1994.

[7] J. M. Park, The Denjoy extension of the Riemann and McShane integrals,
Czechslovak Math. J. 50 (2000), 615-625.

[8] J. M. Park, D. H. Lee and J. H. Yoon, The integrals of Banach space-valued
functions, J. Chungcheong Math. Soc. 20 (2008), 79-89.

[9] L. D. Piazza, Kurzweil-Henstock type Integration on Banach Spaces, Real Anal-
ysis Exchange 29 (2003-2004), no. 2, 543-556.

[10] J. H. Yoon, J. M. Park, Y. K. Kim and B. M. Kim, The AP-Henstock extension
of the Dunford and Pettis integrals, J. Chungcheong Math. Soc. 23 (2010), 879-
884.

*
Department of Mathematics Education
Chungbuk National University
Cheongju 28644, Republic of Korea
E-mail : yoonjh@cbnu.ac.kr


