JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume **30**, No. 1, February 2017 http://dx.doi.org/10.14403/jcms.2017.30.1.129

PRINCIPAL COFIBRATIONS AND GENERALIZED CO-H-SPACES

YEON SOO YOON*

ABSTRACT. For a map $p: X \to A$, there are concepts of co- H^p -spaces, co- T^p -spaces, which are generalized ones of co-H-spaces [17,18]. For a principal cofibration $i_r: X \to C_r$ induced by $r: X' \to X$ from $\iota: X' \to cX'$, we obtain some sufficient conditions to having extensions co- $H^{\bar{p}}$ -structures and co- $T^{\bar{p}}$ -structures on C_r of co- H^p -structures and co- T^p -structures on X respectively. We can also obtain some results about co- H^p -spaces and co- T^p -spaces in homology decompositions for spaces, which are generalizations of Golasinski and Klein's result about co-H-spaces.

1. Introduction

A map $f: X \to B$ is cocyclic [13] if there is a map $\theta: X \to X \lor B$ such that $j\theta \sim (1 \times f)\Delta$, where $j: X \lor B \to X \times B$ is the inclusion and $\Delta: X \to X \times X$ is the diagonal. It is clear that a space X is a co-Hspace if and only if the identity map 1_X of X is cocyclic. We called a space X as a co-H^p-space for a map $p: X \to A$ [17] if there is a cocyclic map $p: X \to A$, that is, there is a co-H^p-structure $\theta: X \to X \lor A$ such that $j\theta \sim (1 \times p)\Delta$, where $j: X \lor A \to X \times A$ is the inclusion and $\Delta: X \to X \times X$ is the diagonal. It is clear that if X is a co-H-space, then for any map $p: X \to A, X$ is a co-H^p-space. In Example 2.4, there is a space Q_p which is a co-H^{\delta}-space, but not a co-H-space. Let τ be the adjoint functor from the group $[\Sigma X, Y]$ to the group $[X, \Omega Y]$. The symbols e and e' denote $\tau^{-1}(1_{\Omega X})$ and $\tau(1_{\Sigma X})$ respectively. In [1], Aguade introduced a T-space as a space X having the property that the evaluation fibration $\Omega X \to X^{S^1} \to X$ is fibre homotopically trivial. It is well known [1] that a space X is a T-space if and only if the evaluating

Received January 11, 2017; Accepted January 20, 2017.

²⁰¹⁰ Mathematics Subject Classification: 55P45, 55P35.

Key words and phrases: $co-H^p$ -spaces, $co-T^p$ -spaces for maps, Homology decompositions.

This work was supported by Hannam University Research Fund, 2016.

map $e: \Sigma \Omega X \to X$ is cyclic. As a dual space of T-space, we introduced [14] that a space X is a co-T-space if $e': X \to \Omega \Sigma X$ is cocyclic. A space X is called [5] a G'-space if $G^n(X) = H^n(X)$ for all n. It is clear that any co-H-space is a co-T-space, and any co-T-space is a G'-space. It is known [14] that $\mathbb{R}P^2$ is a G'-space, but not a co-T-space. We called a space X as a co-T^p-space for a map $p: X \to A$ [18] if $e': X \to \Omega \Sigma X$ is p-cocyclic, that is, there is a co- T^p -structure $\theta: X \to \Omega \Sigma X \vee A$ such that $j\theta \sim (e' \times p)\Delta$, where $j: \Omega \Sigma X \vee A \to \Omega \Sigma X \times A$ is the inclusion and $\Delta: X \to X \times X$ is the diagonal map. It is shown [18] that X is a co-*T*-space if and only if for any space A and any map $p: X \to A, X$ is a co- T^p -space for a map $p: X \to A$. We called a space X as a G'_p space for a map $p: X \to A$ [19] if $e': X \to \Omega \Sigma X$ is weakly p-cocyclic, that is, $e^*(H^n(\Omega \Sigma X)) \subset G^n(X, p, A)$ for all n. For a map $p: X \to A$, there are concepts of co- H^p -spaces, co- T^p -spaces and G'_p -spaces which are generalized ones of co-H-spaces. In general, any co-H-space is a $co-H^p$ -space, any $co-H^p$ -space is a $co-T^p$ -space and any $co-T^p$ -space is a G'_p -space. In [19], we already studied about some properties of G'_p -spaces for maps and their homology decompositions.

In this paper, we study about relationships between co- H^p -spaces, co- T^p -spaces and their homology decompositions respectively. For a principal cofibration $i_r: X \to C_r$ induced by $r: X' \to X$ from $\iota_{X'}: X' \to cX'$, we obtain some sufficient conditions to having extendings co- $H^{\bar{p}}$ -structures and co- $T^{\bar{p}}$ -structures on C_r of H^p -structures and T^p -structures on X respectively. Let X and A be rational spaces and $p: X \to A$ a map, and $\{X_n, q_n, i_n\}$ and $\{A_n, q'_n, i'_n\}$ homology decompositions for X and A respectively. Then we can obtain that X is a co- H^p -space for a map $p: X \to A$ if and only if for each n, X_n is a co- H^{p_n} -space and the all pair of k' invariants $(k'_n(A), k'_n(X)): \tilde{p}_* \to p_n$ are co- H^{p_n} -primitive. Thus we have, as a corollary, that Golasinski and Klein's result about co-H-spaces. We can also obtain that X is a co- T^p -space for a map $p: X \to A$ if and only if for each n, X_n is a co- T^p -space for a map $p: X \to A$ if and only if k' = 0 and k = 0.

2. Dual Gottlieb sets for maps and generalized co-H-spaces

Let $p: X \to A$ be a map. A based map $f: X \to B$ is called *p*-cocyclic [10] if there is a map $\theta: X \to A \lor B$ such that the following diagram is homotopy commutative;

$$\begin{array}{ccc} X & \stackrel{\theta}{\longrightarrow} & A \lor B \\ \Delta & & j \\ X \times X & \stackrel{(p \times f)}{\longrightarrow} & A \times B, \end{array}$$

where $j : A \lor B \to A \times B$ is the inclusion and $\Delta : X \to X \times X$ is the diagonal map. We call such a map θ a *coassociated map* of a *p*-cocyclic map f.

In the case $p = 1_X : X \to X$, $f : X \to B$ is called *cocyclic* [13]. Clearly any cocyclic map is a *p*-cocyclic map and also $f : X \to B$ is *p*-cocyclic iff $p : X \to A$ is *f*-cocyclic. The *dual Gottlieb set* DG(X, p, A; B) for a map $p : X \to A$ [16] is the set of all homotopy classes of *p*-cocyclic maps from X to B. In the case $p = 1_X : X \to X$, we called such a set DG(X, 1, X; B) the *dual Gottlieb set* [13] denoted DG(X; B), that is, the dual Gottlieb set is exactly same with the dual Gottlieb set for the identity map. We denote $DG(X, p, A; K(\pi, n))$ by $G^n(X, p, A; \pi)$ and $DG(X, p, A; K(\mathbb{Z}, n))$ by $G^n(X, p, A)$, $DG(X; K(\mathbb{Z}, n))$ by $G^n(X)$. Haslam [5] introduced and studied the *coevaluation subgroups* $G^n(X; \pi)$ of $H^n(X; \pi)$. $G^n(X; \pi)$ is defined to be the set of all homotopy classes of cocyclic maps from X to $K(\pi, n)$. A space X is called [5] a G'-space if $G^n(X) = H^n(X)$ for all n.

In general, $DG(X; B) \subset DG(X, p, A; B) \subset [X, B]$ for any map $p : X \to B$ and any space B. It is known [16] that for any n, $G^n(S^n \times S^n; \mathbb{Z}) \neq G^n(S^n \times S^n, p_1, S^n; \mathbb{Z}) \neq H^n(S^n \times S^n; \mathbb{Z}).$

The next proposition is an immediate consequence from the definition.

Proposition 2.1. [17]

- (1) For any maps $g: X \to A, h: A \to B$ and any space $C, DG(X, g, A; C) \subset DG(X, hg, B; C)$.
- (2) $DG(X,B) = DG(X,1_X,X;B) \subset DG(X,g,A;B) \subset DG(X,*,A;B) = [X,B]$ for any spaces X, A and B.
- (3) $DG(X,B) = \bigcap \{ DG(X,g,A;B) | g : X \to A \text{ is a map and } A \text{ is a space} \}.$
- (4) If $h : A \to B$ is a homotopy equivalence, then DG(X, g, A; C) = DG(X, hg, B; c).
- (5) For any map $k: Y \to X$, $k^*(DG(X, g, A; B)) \subset DG(Y, gk, A; B)$.
- (6) For any map $k: Y \to X$, $k^*(DG(X;B)) \subset DG(Y,k,X;B)$.
- (7) For any map $s: B \to C, s_*(DG(X, g, A; B)) \subset DG(X, g, A; C).$

PROPOSITION 2.2.

- (1) [9] X is a co-H-space $\iff DG(X, B) = [X, B]$ for any space B.
- (2) [14] X is a co-T-space $\iff DG(X, \Omega C) = [X, \Omega C]$ for any space C.
- (3) [5] X is a G'-space \iff $G^n(X) = H^n(X)$ for all n.

It is clear that any co-*H*-space is a co-*T*-space and any co-*T*-space is a G'-space. It is known [14] that $\mathbb{R}P^2$ is a G'-space, but not a co-*H*-space and co-*T*-space.

PROPOSITION 2.3. Let $p: X \to A$ be a map. Then

(1) [17] X is a co- H^p -space $\iff DG(X, p, A; B) = [X, B]$ for any space B.

(2) [18] X is a co- T^p -space $\iff DG(X, p, A; \Omega C) = [X, \Omega C]$ for any space C.

(3) [19] X is a G'_p -space $\iff G^n(X, p, A) = H^n(X)$ for all n.

Thus we know that any co-*H*-space is a co- H^p -space, any co- H^p -space is a co- T^p -space and any co- T^p -space is a G'_p -space for any map $p: X \to A$.

The following example says that there is a space which is a $\text{co-}H^p$ -space, but not a co-H-space.

EXAMPLE 2.4. For any odd prime p, let [f] be the generator of pprimary summand of $\pi_{4p-3}(S^2)$ which is isomorphic $\mathbb{Z}/p\mathbb{Z}$. Then it is known [7] that for $Q_p = S^2 \cup_f e^{4p-2}$, cat $Q_p = 2$. It is also well known fact that a space X is a co-H-space if and only if cat $X \leq 1$. Thus we know that Q_p is not a co-H-space. It is also known [6, Proposition 15.8] that for a cofibration sequence $S^{4p-3} \xrightarrow{f} S^2 \xrightarrow{i} Q_p \xrightarrow{\delta} S^{4p-2} \rightarrow \cdots$, $\delta : Q_p \rightarrow S^{4p-2}$ is a cocyclic map. Moreover, it is known [16] that $p: X \rightarrow A$ is a cocyclic map if and only if DG(X, p, A; B) = [X, B] for any space B. Thus we know that Q_p is a co- H^{δ} -space.

3. Principal cofibrations and generalized co-H-spaces

Given maps $p: X \to A$, $p': X' \to A'$, let $(s,r): p' \to p$ be a map from p' to p, that is, the following diagram is commutative;

$$\begin{array}{cccc} X' & \stackrel{p'}{\longrightarrow} & A' \\ r & & s \\ X & \stackrel{p}{\longrightarrow} & A. \end{array}$$

It is a well known fact that $Y \xrightarrow{\iota} cY \to \Sigma Y$ is a cofibration, where $\iota(y) = [y, 1]$. Let $i_r : X \to C_r$ be the cofibration induced by $r : X' \to X$ from $\iota_{X'} : X' \to cX'$. Let $i_s : A \to C_s$ be the cofibration induced by $s : A' \to A$ from $\iota_{A'} : A' \to cA'$. Then there is a map $\bar{p} : C_t \to C_s$ such that the following diagram is commutative

$$\begin{array}{ccc} X & \stackrel{p}{\longrightarrow} & A \\ i_r \downarrow & & i_s \downarrow \\ C_r & \stackrel{\bar{p}}{\longrightarrow} & C_s, \end{array}$$

where $C_r = cX' \amalg X/[x', 1] \sim r(x')$, and $C_s = cA' \amalg A/[a', 1] \sim s(a')$, $\bar{p} : C_r \to C_s$ is given by $\bar{p}([x', t]) = [p'(x'), t]$ if $[x', t] \in cX'$ and $\bar{p}(x) = p(x)$ if $x \in X$, $i_r(x) = x$, $i_s(a) = a$.

DEFINITION 3.1. Let X be a co- H^p -space for a map $p: X \to A$. A map $(s,r): p' \to p$ is called a co- H^p -primitive if there is a map $\theta: X \to A \lor X$ such that $j\theta \sim (p \times 1)\Delta$ and $(i_s \lor i_r)\theta r \sim *: X' \to C_s \lor C_r$, where $j: A \lor X \to A \times X$ is the inclusion.

DEFINITION 3.2. Let X be a co- T^p -space for a map $p: X \to A$. A map $(s,r): p' \to p$ is called a co- T^p -primitive if there is a map $\theta: X \to A \vee \Omega \Sigma X$ such that $j\theta \sim (p \times e')\Delta$ and $(i_s \vee \Omega \Sigma i_r)\theta r \sim *: X' \to C_s \vee \Omega \Sigma C_r$, where $j: A \vee \Omega \Sigma X \to A \times \Omega \Sigma X$ is the inclusion.

DEFINITION 3.3. [19] Let X be a G'_p -space for a map $p: X \to A$. A map $(s,r): p' \to p$ is called a G'_p -primitive if for each map $g: \Omega \Sigma X \to K(\mathbb{Z},m)$, m arbitrary, there is a map $G: X \to A \lor K(\mathbb{Z},m)$ such that $jG \sim (p \times g \circ e'_X)\Delta$ and $(i_s \lor 1)Gr \sim *: X' \to C_s \lor K(\mathbb{Z},m)$, where $j: A \lor K(\mathbb{Z},m) \to A \times K(\mathbb{Z},m)$ is the inclusion and $e'_X: X \to \Omega \Sigma X$ is the adjoint functor image, $\tau(1_{\Sigma X})$, of $1_{\Sigma X}$.

Proposition 3.4.

(1) If X is a co- H^p -space for a map $p: X \to A$ and $(s,r): p' \to p$ is a co- H^p -primitive, then $(s,r): p' \to p$ is a co- T^p -primitive.

(2) If X is a co- T^p -space for a map $p: X \to A$ and $(s,r): p' \to p$ is a co- T^p -primitive, then $(s,r): p' \to p$ is a G'_p -primitive.

Proof.

(1) Since $(s,r): p' \to p$ is a co- H^p -primitive, there is a map $\theta: X \to A \lor X$ such that $j\theta \sim (p \times 1)\Delta$ and $(i_s \lor i_r)\theta r \sim *: X' \to C_s \lor C_r$, where $j: A \lor X \to A \times X$ is the inclusion. Let $\theta' = (1 \lor e')\theta: X \to A \lor \Omega \Sigma X$. Then $j'\theta' \sim (1 \times e')j\theta \sim (1 \times e')(p \times 1)\Delta = (p \times e')\Delta$, where $j': A \lor \Omega \Sigma X \to A \times \Omega \Sigma X$ is the inclusion. Moreover, since

 $(i_s \vee \Omega\Sigma i_r)(1 \vee e'_X) \sim (1 \vee e'_{C_r})(i_s \vee i_r) : A \vee X \to C_s \vee \Omega\Sigma C_r, \text{ we have that } (i_s \vee \Omega\Sigma i_r)\theta'r \sim (i_s \vee \Omega\Sigma i_r)(1 \vee e'_X)\theta r \sim (1 \vee e'_{C_r})(i_s \vee i_r)\theta r \sim (1 \vee e'_{C_r})* \sim *. \text{ Thus } (s,r) : p' \to p \text{ is a co-}T^p\text{-primitive.}$ $(2) \text{ Since } (s,r) : p' \to p \text{ is a co-}T^p\text{-primitive, there is a map } \theta : X \to A \vee \Omega\Sigma X \text{ such that } j\theta \sim (p \times e')\Delta \text{ and } (i_s \vee \Omega\Sigma i_r)\theta r \sim *: X' \to C_s \vee \Omega\Sigma C_r, \text{ where } j : A \vee \Omega\Sigma X \to A \times \Omega\Sigma X \text{ is the inclusion. For any } m, \text{ each } g : \Omega\Sigma X \to K(\mathbb{Z},m), \text{ let } \theta' = (1 \vee g)\theta : X \to A \vee K(\mathbb{Z},m). \text{ Then } j'\theta' \sim (1 \times g)j\theta \sim (1 \times g)(p \times e')\Delta = (p \times ge')\Delta, \text{ where } j' : A \vee K(\mathbb{Z},m) \to A \times K(\mathbb{Z},m) \text{ is the inclusion. Moreover, since } (1 \vee \Omega\Sigma g)(i_s \vee \Omega\Sigma i_r) \sim \mathbb{C}$

 $\begin{array}{l} (i_s \vee 1)(1 \vee g) : A \vee \Omega \Sigma X \to C_s \vee \Omega \Sigma K(\mathbb{Z},m), \text{ we have that } (i_s \vee 1)\theta'r = \\ (i_s \vee 1)(1 \vee g)\theta r \sim (1 \vee \Omega \Sigma g)(i_s \vee \Omega \Sigma i_r)\theta r \sim (1 \vee \Omega \Sigma g)* \sim *. \text{ Thus } \\ (s,r) : p' \to p \text{ is a } G'_p\text{-primitive.} \end{array}$

Lemma 3.5.

(1) A map $f : X \to B$ can be extended to a map $h : C_r \to B$ with $hi_r = f$ if and only if $fr \sim *$.

(2) [15] Given maps $g_t : C_r \to B_t(t = 1, 2)$ and $g : C_r \to B_1 \vee B_2$ satisfying $p_t j g i_r \sim g_t i_r(t = 1, 2)$, then there is a map $h : C_r \to B_1 \vee B_2$ such that $g i_r = h i_r$ and $p_t j h \sim g_t(t = 1, 2)$, where $j : B_1 \vee B_2 \to B_1 \times B_2$ is the inclusion and $p_t : B_1 \times B_2 \to B_t, t = 1, 2$ are projections.

Theorem 3.6.

(1) If X is a co- H^p -space for a map $p: X \to A$ and $(s,r): p' \to p$ is co- H^p -primitive, then C_r is a co- $H^{\bar{p}}$ -space for a map $\bar{p}: C_r \to C_s$.

(2) If X is a co- T^p -space for a map $p: X \to A$ and $(s,r): p' \to p$ is co- T^p -primitive, then C_r is a co- $T^{\bar{p}}$ -space for a map $\bar{p}: C_r \to C_s$.

Proof.

(1) Since $(s,r): p' \to p$ is a co- H^p -primitive, there is a map $\theta: X \to A \lor X$ such that $j\theta \sim (p \times 1)\Delta$ and $(i_s \lor i_r)\theta r \sim *: X' \to C_s \lor C_r$, where $j: A \lor X \to A \times X$ is the inclusion. From Lemma 3.5(1), there is an extending $\theta': C_r \to C_s \lor C_r$ of $(i_s \lor i_r) \circ \theta: X \to C_s \lor C_r$, that is, $\theta' \circ i_r = (i_s \lor i_r) \circ \theta$. Then we have that $p_1j'\theta'i_r = p_1j'(i_s \lor i_r)\theta =$ $p_1(i_s \times i_r)j\theta \sim p_1(i_s \times i_r)(p \times 1)\Delta = i_s \circ p \sim \bar{p} \circ i_r$ and $p_2j'\theta'i_r =$ $p_2j'(i_s \lor i_r)\theta = p_2(i_s \times i_r)j\theta \sim p_2(i_s \times i_r)(p \times 1)\Delta \sim i_r \sim 1_{C_r} \circ i_r$. Thus we have, from Lemma 3.5(2), that there is a map $\bar{\theta}: C_r \to C_s \lor C_r$ such that $\bar{\theta}i_r = \theta'i_r = (i_s \lor i_r)\theta$ and $p_1j'\bar{\theta} \sim \bar{p}$ and $p_2j'\bar{\theta} \sim 1_{C_r}$. Thus we know that $1: C_r \to C_r$ is \bar{p} -cocyclic and C_r is a co- $H^{\bar{p}}$ -space for a map $\bar{p}: C_r \to C_s$. This proves the theorem.

(2) Since $(s,r): p' \to p$ is a co- T^p -primitive, there is a map $\theta: X \to A \vee \Omega \Sigma X$ such that $j\theta \sim (p \times e')\Delta$ and $(i_s \vee \Omega \Sigma i_r)\theta r \sim *: X' \to C_s \vee \Omega \Sigma C_r$, where $j: A \vee \Omega \Sigma X \to A \times \Omega \Sigma X$ is the inclusion. From Lemma

3.5(1), there is an extending $\theta': C_r \to C_s \vee \Omega \Sigma C_r$ of $(i_s \vee \Omega \Sigma i_r) \circ \theta$: $X \to C_s \vee \Omega \Sigma C_r$, that is, $\theta' \circ i_r = (i_s \vee \Omega \Sigma i_r) \circ \theta$. Then we have that $p_1 j' \theta' i_r = p_1 j' (i_s \vee \Omega \Sigma i_r) \theta = p_1 (i_s \times \Omega \Sigma i_r) j \theta \sim p_1 (i_s \times \Omega \Sigma i_r) (p \times e') \Delta =$ $i_s \circ p \sim \bar{p} \circ i_r$ and $p_2 j' \theta' i_r = p_2 j' (i_s \vee \Omega \Sigma i_r) \theta = p_2 (i_s \times \Omega \Sigma i_r) j \theta \sim$ $p_2 (i_s \times \Omega \Sigma i_r) (p \times e') \Delta \sim \Omega \Sigma i_r e'_X \sim e'_{C_r} \circ i_r$. Thus we have, from Lemma 3.5(2), that there is a map $\bar{\theta} : C_r \to C_s \vee \Omega \Sigma C_r$ such that $\bar{\theta} i_r = \theta' i_r = (i_s \vee \Omega \Sigma i_r) \theta$ and $p_1 j' \bar{\theta} \sim \bar{p}$ and $p_2 j' \bar{\theta} \sim e'_{C_r}$. Thus we know that $e'_{C_r} : C_r \to \Omega \Sigma C_r$ is \bar{p} -cocyclic and C_r is a co- $T^{\bar{p}}$ -space for a map $\bar{p} : C_r \to C_s$. This proves the theorem.

In 1959, Eckmann and Hilton [2] introduced a dual concept of Postnikov system as follows; A homology decomposition of X consists of a sequence of spaces and maps $\{X_n, q_n, i_n\}$ satisfying (1) $q_n : X_n \to$ X induces an isomorphism $(q_n)_* : H_i(X_n) \to H_i(X)$ for $i \leq n$ and $H_i(X_n) = 0$ for i > n, (2) $i_n : X_n \to X_{n+1}$ is a cofibration with cofiber $M(H_{n+1}(X), n)$ (a Moore space of type $(H_{n+1}(X), n)$), (3) $q_n \sim q_{n+1} \circ i_n$. It is known by [6] that if X be a 1-connected space having the homotopy type of CW complex, then there is a homology decomposition $\{X_n, q_n, i_n\}$ of X such that $i_n : X_n \to X_{n+1}$ is the principal cofibration induced from $\iota : M(H_{n+1}(X), n) \to cM(H_{n+1}(X), n)$ by a map $\kappa'_n: M(H_{n+1}(X), n) \to X_n$ which is called the dual Postnikov invariants. A space X is called a *rational space* [11] if X is a 1-connected space having homotopy type of a CW-complex such that for each n > 0, $H_n(X, \mathbb{Z})$ is a finite dimensional vector space over \mathbb{Q} . It is well known [11] that if X and A are rational spaces and $p: X \to A$ is a based map, then there exist homology decompositions $\{X_n, q_n, i_n\}$ and $\{A_n, q'_n, i'_n\}$ for X and A respectively and induced maps $\{p_n : X_n \to A_n\}$ satisfying

(1) for each n, the following diagram is homotopy commutative

, that is, $(k'_n(A), k'_n(X)) : \tilde{p}_{\#} \to p_n$ is a map,

1

(2) $p_{n+1}:X_{n+1}\to A_{n+1}$ given by $p_{n+1}=\bar{p_n}$ satisfying commute diagram

$$X_n \xrightarrow{p_n} A_n$$
$$i_n(=\iota_{k'_n(X)}) \downarrow \qquad i'_n(=\iota_{k'_n(A)}) \downarrow$$
$$X_{n+1} \xrightarrow{p_{n+1}} A_{n+1},$$

(3) for each n, the following diagram is homotopy commutative

$$\begin{array}{cccc} X_n & \stackrel{p_n}{\longrightarrow} & A_n \\ & & & \\ q_n & & & q'_n \\ & & & & \\ X & \stackrel{p}{\longrightarrow} & A. \end{array}$$

THEOREM 3.7. Let X and A be rational spaces and $p: X \to A$ a map, and $\{X_n, q_n, i_n\}$ and $\{A_n, q'_n, i'_n\}$ homology decompositions for X and A respectively.

(1) If X is a co- H^p -space for a map $p: X \to A$, then each X_n is a co- H^{p_n} -space and the all pair of k' invariants $(k'_n(A), k'_n(X)): \tilde{p}_* \to p_n$ are co- H^{p_n} -primitive.

- (2) If X_{n-1} is a co- $H^{p_{n-1}}$ -space and the pair of k'-invariants $(k'_{n-1}(A), k'_{n-1}(X)) : \tilde{p}_* \to p_{n-1}$ is co- $H^{p_{n-1}}$ -primitive, then X_n is a co- H^{p_n} -space.
 - Proof. (1) Since X is a co- H^p -space for a map $p: X \to A$, there is a map $\theta: X \to A \lor X$ such that $j\theta \sim (p \times 1)\Delta$, where $j: A \lor X \to A$ $A \times X$ is the inclusion. Then $\{A_n \lor X_n, q'_n \lor q_n, i'_n \lor i_n\}$ is a homology decomposition for $A \vee X$. Then we have, by Toomer's result [12, Theorem 4], that there are families of maps $p_n: X_n \to A_n$ and $\theta_n: X_n \to A_n \lor X_n \text{ such that } i'_n p_n = p_{n+1}i_n \text{ and } q'_n p_n \sim pq_n,$ and $(i'_n \lor i_n)\theta_n = \theta_{n+1}i_n$ and $(q'_n \lor q_n)\theta_n \sim \theta q_n$ for $n = 2, 3, \cdots$ respectively, and $k'_n(A)\tilde{p}_* \sim p_n k'_n(X) : M(H_{n+1}(X), n) \to A_n$ and $(k'_n(A) \vee k'_n(X)\hat{\theta}_* \sim \theta_n k'_n(X) : M(H_{n+1}(X), n) \to A_n \vee X_n, \text{ where }$ $k'_n(A) : M(H_{n+1}(A), n) \to A_n, \ k'_n(X) : M(H_{n+1}(X), n) \to X_n$ are k'-invariants of A and X respectively, $\tilde{p}_*: M(H_{n+1}(X), n) \to$ $M(H_{n+1}(A), n)$ and $\theta_*: M(H_{n+1}(X), n) \to M(H_{n+1}(A \lor X), n) \approx$ $M(H_{n+1}(A) \oplus H_{n+1}(X), n) \approx M(H_{n+1}(A), n) \vee M(H_{n+1}(X), n)$ are the induced maps by $p: X \to A$ and $\theta: X \to A \lor X$ respectively. It is known [12] that the homology decomposition of a rational space is well defined up to homotopy type. Thus we know that if $f \sim g: X \to A$, then $f_n \sim g_n: X_n \to A_n$. Since $p_1 j \theta \sim p$ and $p_2 j\theta \sim 1$, we know that $p_1 j_n \theta_n \sim p_n$ and $p_2 j_n \theta_n \sim 1$. Thus for each n, there exists a co- H^p -structure $\theta_n: X_n \to A_n \vee X_n$ such that $j_n \theta_n \sim (p_n \times 1) \Delta$, where $j_n : A_n \vee X_n \to A_n \times X_n$ is the inclusion and $p_n: X_n \to A_n$ is an induced map from $p: X \to A$, and X_n is a co- H^{p_n} -space. Moreover, since there is an extension $\theta_{n+1}: X_{n+1} \to A_{n+1} \lor X_{n+1}$ of θ_n such that $\theta_{n+1}i_n = (i'_n \lor i_n)\theta_n$, we know, from Lemma , that $(i'_n \vee i_n) \theta_n k'_n(X) \sim *$ and all the pair of k' invariants $(k'_n(A), k'_n(X)) : \tilde{p}_* \to p_n$ are co- H^{p_n} -primitive.

(2) It follows from Theorem 3.6 (1).

Observe that X and A are homotopy types of the direct limits $\varinjlim X_n$ and $\varinjlim A_n$ respectively. Moreover, since each X_n a co- H^{p_n} -space and all pair of k' invariants $(k'_n(A), k'_n(X)) : \tilde{p}_* \to p_n$ are co- H^{p_n} -primitive, we see that X admit a co- H^p -structure. Thus we have the following corollary.

COROLLARY 3.8. Let X and A be rational spaces and $p: X \to A$ a map, and $\{X_n, q_n, i_n\}$ and $\{A_n, q'_n, i'_n\}$ homology decompositions for X and A respectively. Then X is a co- H^p -space for a map $p: X \to A$ if and only if for each n, X_n is a co- H^{p_n} -space and the all pair of k'invariants $(k'_n(A), k'_n(X)): \tilde{p}_* \to p_n$ are co- H^{p_n} -primitive.

Taking $p = 1_{X_n}$, $p' = 1_{M(H_{n+1}(X),n)}$, $r = s = k'_n(X)$, we can obtain, from the fact that $i_n : X_n \to X_{n+1}$ is a co-*H*-map if and only if $(k'_n(X), k'_n(X)) : 1 \to 1_{X_n}$ is co-*H*-primitive and the above corollary, the following corollary given by Golasinski and Klein [3] for rational spaces.

COROLLARY 3.9. [3] Let X be a rational space and $\{X_n, q_n, i_n\}$ a homology decomposition for X. Then X is n co-H-space if and only if for each X_n there exists such a co-H-structure that $i_n : X_n \to X_{n+1}$ is a co-H-map.

THEOREM 3.10. Let X and A be rational spaces and $p: X \to A$ a map, and $\{X_n, q_n, i_n\}$ and $\{A_n, q'_n, i'_n\}$ homology decompositions for X and A respectively.

(1) If X is a co- T^p -space for a map $p: X \to A$, then each X_n is a co- T^{p_n} -space and the all pair of k' invariants $(k'_n(A), k'_n(X)): \tilde{p}_* \to p_n$ are co- T^{p_n} -primitive.

- (2) If X_{n-1} is a co- $T^{p_{n-1}}$ -space and the pair of k'-invariants $(k'_{n-1}(A), k'_{n-1}(X)) : \tilde{p}_* \to p_{n-1}$ is co- $T^{p_{n-1}}$ -primitive, then X_n is a co- T^{p_n} -space.
 - Proof. (1) Since X is a co- T^p -space for a map $p: X \to A$, there is a map $\theta: X \to A \vee \Omega \Sigma X$ such that $j\theta \sim (p \times e')\Delta$, where $j: A \vee \Omega \Sigma X \to A \times \Omega \Sigma X$ is the inclusion. Then $\{A_n \vee \Omega \Sigma X_n, q'_n \vee \Omega \Sigma q_n, i'_n \vee \Omega \Sigma i_n\}$ is a homology decomposition for $A \vee \Omega \Sigma X$. Then we have, by Toomer's result [15,Theorem 4], that there are families of maps $p_n: X_n \to A_n$ and $\theta_n: X_n \to A_n \vee \Omega \Sigma X_n$ such that $i'_n p_n = p_{n+1}i_n$ and $q'_n p_n \sim pq_n$, and $(i'_n \vee \Omega \Sigma i_n)\theta_n =$ $\theta_{n+1}i_n$ and $(q'_n \vee \Omega \Sigma q_n)\theta_n \sim \theta q_n$ for $n = 2, 3, \cdots$ respectively, and $k'_n(A)\tilde{p}_* \sim p_n k'_n(X): M(H_{n+1}(X), n) \to A_n$ and $(k'_n(A) \vee$

 $k'_n(\Omega\Sigma X)\tilde{\theta}_* \sim \theta_n k'_n(X) : M(H_{n+1}(X), n) \to A_n \vee \Omega\Sigma X_n$, where $k'_n(A) : M(H_{n+1}(A), n) \to A_n, \ k'_n(X) : M(H_{n+1}(X), n) \to X_n$ are k'-invariants of A and X respectively, $\tilde{p}_*: M(H_{n+1}(X), n) \to$ $M(H_{n+1}(A), n)$ and $\theta_* : M(H_{n+1}(X), n) \to M(H_{n+1}(A \lor \Omega \Sigma X), n) \approx$ $M(H_{n+1}(A) \oplus H_{n+1}(\Omega \Sigma X), n) \approx M(H_{n+1}(A), n) \lor M(H_{n+1}(\Omega \Sigma X), n)$ are the induced maps by $p: X \to A$ and $\theta: X \to A \lor \Omega \Sigma X$ respectively. It is known [12] that the homology decomposition of a rational space is well defined up to homotopy type. Thus we know that if $f \sim g : X \to A$, then $f_n \sim g_n : X_n \to A_n$. Since $p_1 j \theta \sim p$ and $p_2 j \theta \sim e'$, we know that $p_1 j_n \theta_n \sim p_n$ and $p_2 j_n \theta_n \sim e'_{X_n}$. Thus for each n, there exists a co- T^p -structure $\theta_n : X_n \to A_n \vee \Omega \Sigma X_n$ such that $j_n \theta_n \sim (p_n \times e'_{X_n}) \Delta$, where $j_n: A_n \vee \Omega \Sigma X_n \to A_n \times \Omega \Sigma X_n$ is the inclusion and $p_n: X_n \to A_n$ is an induced map from $p: X \to A$, and X_n is a co- T^{p_n} -space. Moreover, since there is an extension $\theta_{n+1}: X_{n+1} \to A_{n+1} \vee \Omega \Sigma X_{n+1}$ of θ_n such that $\theta_{n+1}i_n = (i'_n \vee \Omega \Sigma i_n)\theta_n$, we know, from Lemma , that $(i'_n \vee \Omega \Sigma i_n) \theta_n k'_n(X) \sim *$ and all the pair of k' invariants $(k'_n(A), k'_n(X)) : \tilde{p}_* \to p_n \text{ are co-} T^{p_n}\text{-primitive.}$

(2) It follows from Theorem 3.6(2).

Observe that X and A are homotopy types of the direct limits $\varinjlim X_n$ and $\varinjlim A_n$ respectively. Moreover, since each X_n a co- T^{p_n} -space and all pair of k' invariants $(k'_n(A), k'_n(X)) : \tilde{p}_* \to p_n$ are co- T^{p_n} -primitive, we see that X admit a co- T^p -structure. Thus we have the following corollary.

COROLLARY 3.11. Let X and A be rational spaces and $p: X \to A$ a map, and $\{X_n, q_n, i_n\}$ and $\{A_n, q'_n, i'_n\}$ homology decompositions for X and A respectively. Then X is a co- T^p -space for a map $p: X \to A$ if and only if for each n, X_n is a co- T^{p_n} -space and the all pair of k' invariants $(k'_n(A), k'_n(X)): \tilde{p}_* \to p_n$ are co- T^{p_n} -primitive.

References

- [1] J. Aguade, Decomposable free loop spaces, Canad. J. Math. 39 (1987), 938-955.
- B. Eckmann and P. Hilton, Decomposition homologique d'un polyedre simplement connexe, ibid 248 (1959), 2054-2558.
- [3] M. Golasinski and J. R. Klein, On maps into a co-H-spaces, Hiroshima Math. J. 28 (1998), 321-327.
- [4] D. H. Gottlieb, A certain subgroup of the fundamental group, Amer. J. Math. 87 (1965), 840-856.

- [5] H. B. Haslam, G-spaces and H-spaces, Ph. D. Thesis, Univ. of California, Irvine, 1969.
- [6] P. Hilton, *Homotopy Theory and Duality*, Gordon and Breach Science Pub. 1965.
- [7] N. Iwase, Ganea's conjecture on LS-category, Bull. Londen Math. Soc. 30 (1998), no. 6, 623-634.
- [8] D. W. Kahn, A note on H-spaces and Postnikov systems of spheres, Proc. Amer. Math. Soc. 15 (1964), 300-307.
- [9] K. L. Lim, Cocyclic maps and coevaluation subgroups, Canad. Math. Bull. 30 (1987), 63-71.
- [10] N. Oda, The homotopy of the axes of pairings, Canad. J. Math. 17 (1990), 856-868.
- [11] G. H. Toomer, Liusternik-Schnirelmann Category and the Moore spectral sequence, Ph. D. Thesis, Cornell Univ. 1974.
- [12] G. H. Toomer, Two Applications of Homology Decompositions, Can. J. Math. 27 (1975), no. 2, 323-329.
- [13] K. Varadarajan, Generalized Gottlieb groups, J. Indian Math. Soc. 33 (1969), 141-164.
- [14] M. H. Woo and Y. S. Yoon, *T-spaces by the Gottlieb groups and duality*, J. Austral. Math. Soc. (Series A) 59 (1995), 193-203.
- [15] Y. S. Yoon, Lifting Gottlieb sets and duality, Proc. Amer. Math. Soc. 119 (1993), no. 4, 1315-1321.
- [16] Y. S. Yoon, The generalized dual Gottlieb sets, Topology Appl. 109 (2001), 173-181.
- [17] Y. S. Yoon, H^f-spaces for maps and their duals, J. Korea Soc. Math. Edu. Series B 14 (2007), no. 4, 287-306.
- [18] Y. S. Yoon, Lifting T-structures and their duals, J. Chungcheong Math. Soc. 20 (2007), no. 3, 245-259.
- [19] Y. S. Yoon, G'_p-spaces for maps and Homology Decompositions, J. Chungcheong Math. Soc. 28 (2015), no. 4, 603-614.
- [20] Y. S. Yoon, Principal Fibrations and Generalized H-spaces, J. Chungcheong Math. Soc. 29 (2016), no. 1, 177-186.

*

Department of Mathematics Education Hannam University Daejeon 306-791, Korea *E-mail*: yoon@hannam.ac.kr