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PERSISTENT ACTIONS ON COMPACT METRIC

SPACES

Jiweon Ahn*, Keonhee Lee**, and Seunghee Lee***

Abstract. In this paper, we introduce the notion of persistent
actions of finitely generated groups on compact metric spaces and
give a necessary condition for a persistent dynamical system to be
topologically stable.

1. Introduction

R. Bowen [1] introduced the concept of the pseudo-orbit-tracing-
property and essentially showed that expansive homeomorphisms with
this property are topologically stable. A. Morimoto [5] has proved that
the topological stability implies the pseudo-orbit-tracing-property. K.
Yano [6] showed that expansiveness condition is necessary in Bowen’s
result. Moreover J. Lewowicz [4] introduced the concept of persistence
of a dynamical system which is weaker than that of topological stability.

Very recently, N. Chung and K. Lee [3] introduced the notion of
topological stability for actions of finitely generated groups on compact
metric spaces and proved an expansive action having the pseudo-orbit-
tracing property is topologically stable. In this paper, we introduce
the notion of persistent actions of finitely generated groups on compact
metric spaces and give a necessary condition to be topologically stable.

LetX donote a compact metric space with a metric d. LetHomeo(X)
denote the space of all homeomorphisms of X to itself topologied by the
C0-metric

d0(f, g) = sup{d(f(x), g(x)) : x ∈ X}.
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To explain the main theorem of our paper, we recall some definitions
for group actions which are introduced very recently in [3].

Let G be a finitely generated group and Act(G,X) denote the set of
all continuous actions of G on X. Let A be a finitely generating set of
G. We define a metric dA on Act(G,X) by

dA(T, S) = sup{d(Tax, Sax) : x ∈ X, a ∈ A}

for every T, S ∈ Act(G,X).

Definition 1.1. [3] An action T ∈ Act(G,X) is said to be A-
topologically stable if for every ε > 0, there is δ > 0 such that if S
is another continuous action of G on X with dA(T, S) < δ then there
exists a continuous map f : X → X with

· Tgf = fSg for every g ∈ G, and
· d(f, 1X) ≤ ε,

where 1X is the identity map on X. The map f is called the semicon-
jugacy from S to T with respect to A.

We can see that topological stability does not depend on the choice
of a symmetric finitely generating set. And we say that T is topolog-
ically stable if it is A-topologically stable for some symmetric finitely
generating set A of G.

We say that an action T ∈ Act(G,X) is expansive if there exists a
constant η > 0 such that for every x ̸= y, we have

sup
g∈G

d(Tgx, Tgy) > η.

Such number η > 0 is called an expansive constant of T .
Now we will introduce the definition of persistent actions of finitely

generated groups by using symmetric finitely generating sets of the act-
ing groups.

Definition 1.2. Let A be a symmetric finitely generating set of G,
and let T ∈ Act(G,X). We say that T is α-persistent(or β-persistent)
with respect to A if for every ε > 0, there is δ > 0 such that if dA(T, S) <
δ and x ∈ X, then there exists y ∈ X satisfying

d(Tgy, Sgx) < ε (or d(Tgx, Sgy) < ε)

for all g ∈ G.

We can check that a persistent action does not depend on the choice
of a symmetric finitely generating set A of G as following lemma.
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Lemma 1.3. Let T ∈ Act(G,X). Let A and B be two symmetric
finitely generating sets of G. If T is α-persistent with respect to A, then
it is also α-persistent with respect to B.

Proof. Let d be a compatible metric on X. By the assumption, T
is α-persistent with respect to A, for every ε > 0 there is δ > 0 such
that if dA(T, S) < δ and x ∈ X, then there exists y ∈ X satisfying
d(Tgy, Sgx) < ε for all g ∈ G. To prove this lemma, it is enough to claim
that there is δ′ > 0 such that every S ∈ Act(G,X) with dB(T, S) < δ′

satisfies dA(T, S) < δ.
Put k := maxa∈A lB(a), where lB is the word length metric on G

induced by B. Choose δ1 > 0 such that kδ1 < δ. Since X is compact,
A and B are finite and T is a continuous action, there exists δ′ > 0
such that d(Tg′x, Tg′y) < δ1 for any x and y with d(x, y) < δ′ and
g′ ∈ G with lB(g

′) ≤ k. For every a ∈ A, we write a as b1 · · · bl(a),
where l(a) = lB(a) ≤ k, bi ∈ B, and i = 1, · · · , l(a). Then for every
S ∈ Act(G,X) with dB(T, S) < δ′, we get the following conclusion;

dA(T, S) = d(Tax, Sax)

= d(Tb1···bl(a)x, Sb1···bl(a)x)

≤ d(Tb1···bl(a)−1
Tbl(a)x, Tb1···bl(a)−1

Sbl(a)x)

+ d(Tb1···bl(a)−2
Tbl(a)−1

Sbl(a)x, Tb1···bl(a)−1
Sbl(a)−1Sbl(a)x)

+ · · ·+ d(Tb1Tb2Sb3···bl(a)x, Tb1Sb2Sb3···bl(a)−1
x)

+ d(Tb1Sb2···bl(a)x, Sb1···bl(a)x)

≤ kδ′ < δ.

We say that T is α-persistent if it is α-persistent with respect to some
symmetric finitely generating set A of G. Throughout this paper, a per-
sistent action means both α and β-persistent.

Lemma 1.4. A topologically stable dynamical system is persistent for
group action.

Proof. It is straightforward.

The following is our main theorem which gives a necessary condition for
a persistent action to be topologically stable.

Theorem A. A persistent action is topologically stable if it is expansive.
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2. Proof of Theorem A

Let G and X be as before. Let T, S ∈ Act(G,X). If dA(T, S) < δ,
then each S-orbit {Sgx} of x ∈ X is nearly a T -orbit in the sense that
d(TaSgx, Sagx) < δ for every a ∈ A, g ∈ G. To prove Theorem A, we
need the following lemmas.

Lemma 2.1. Assume that an expansive action T of a finitely gen-
erated group G on a compact metric space (X, d) is α-persistent with
respect to some finitely generating set A of G. Let ε < η/2 and δ corre-
ponds to ε as in Definition 1.2, where η is an expansive constant of the
action T . Then for every S-orbit {Sgx}g∈G of x ∈ X with d(T, S) < δ
there exists a unique point in X satisfying α-persistentness.

Proof. Let {Sgx}g∈G be a S-orbit of x with d(T, S) < δ and let y and
z be two points which is {Tgy}g∈G and {Tgz}g∈G are two orbits such
that d(Tgy, Sgx) < ε and d(Tgz, Sgx) < ε for all g ∈ G. Then we can
certify

d(Tgy, Tgz) ≤ d(Tgy, Sgx) + d(Sgx, Tgz) < 2ε < η

for every g ∈ G. This fact means y = z, since T is expansive.

Lemma 2.2. [3] Let T be an expansive action of G on a compact
metric space (X, d) and let η be an expansive constant of the action.
Then for every ε > 0 there exists a non-empty finite subet F of G such
that whenever supg∈Fd(Tgx, Tgy) ≤ η, one has d(x, y) < ε.

Proof. See Lemma 1.18 in [3].

Proof of Theorem A. Let η > 0 be an expansive constant of T and
ε < η/3. Let A be a finite generating set of G. Choose δ corresponding
to ε as in Definition 1.2. Let S be another continuous action of G on
(X, d) with dA(T, S) < δ. Then by the persistentness, there exists y ∈ X
such that

(∗) d(Tgy, Sgx) < ε and d(Tgx, Sgy) < ε

for all g ∈ G and x ∈ X.
Define a map f : X → X by f(x) = y. By Lemma 2.1, f is well-

defined. In particular, we have d(f(x), x) < ε for every x ∈ X, and
hence d(f, IdX) ≤ ε.

Now we will prove that f is continuous. Let ε1 > 0. By Lemma
2.2, there is a non-empty finite subset F of G such that whenever
supg∈Fd(Tgx, Tgy) ≤ η one has d(x, y) < ε1. Choose δ1 > 0 such that
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for every x, y ∈ X with d(x, y) < δ1, one has d(Sgx, Sgy) < η/3 for any
g ∈ F. Then, for every x, y ∈ X with d(x, y) < δ1 and for every g ∈ F,
we get

d(Tgf(x), Tgf(y)) = d(fSg(x), fSg(y))

≤ d(fSg(x), Sg(x)) + d(Sg(x), Sg(y)) + d(Sg(y), fSg(y))

< ε+ η/3 + ε < η.

Thus d(f(x), f(y)) < ε1 for every x, y ∈ X with d(x, y) < δ1 and hence
f is continuous.

Next we will show that Tgf(x) = fSg(x) for every x ∈ X and g ∈ G.
Then

d(Tg′f(Sgx), Sg′gx) = d(Tg′f(Sgx), Sg′Sgx) < ε

for every g′ ∈ G. One the other hand, applying (∗), we obtain

d(Tg′Tgf(x), Sg′gx) = d(Tg′gf(x), Sg′gx) < ε.

Then by Lemma 2.1, we get Tgf(x) = fSg(x). This completes the proof
of Theorem A. �

Let T, S ∈ Act(G,X). We say that T is topologically conjugate to S
if there exists h ∈ Homeo(X) satisfying hS = Th, and the homeomor-
phism h is called a topological conjugacy between T and S. We can see
that a persistence action is invariant under a topological conjugacy.

Theorem 2.3. A dynamical system which is topologically conjugate
to a persistent action is persistent.

Proof. Suppose that a persistent action T ∈ Act(G,X) is topologi-
cally conjugate to a dynamical system S. Then we have a topological
conjugacy f ∈ Homeo(X) between T and S. Let ε > 0 be given, and
choose 0 < ε′ < ε such that if d(a, b) < ε′ then d(f−1(a), f−1(b)) < ε for
a, b ∈ X.

Since T is persistent, there is δ′ > 0 such that if dA(T, T
′) < δ′ for

some symmetric finitely generating set A of G then for any x ∈ X, there
exists y ∈ X satisfying

d(Tg(y), T
′
g(x)) < ε′

for all g ∈ G.
We can choose 0 < δ < δ′ such that if d(a, b) < δ, then

d(f(a), f(b)) < δ′.
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Let S0 ∈ Act(G,X) be such that dA(S, S0) < δ, and put T0 = f ◦S0 ◦
f−1. Since

d(f(S(x)), f(S0(x))) = d(T (f(x)), T0(f(x))) < δ′

for any x ∈ X, we have dA(T, T0) < δ′. Since T is persistent, there is
f(y) ∈ X such that

d(Tg(f(y)), T
′
g(f(x))) = d(f(Sg(y)), f(S

′
g(x))) < ε′

for all g ∈ G. Therefore we have d(Sg(y), S
′
g(x)) < ε′ for all g ∈ G. This

completes the proof.
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