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CHAIN TRANSITIVE SETS AND DOMINATED

SPLITTING FOR GENERIC DIFFEOMORPHISMS

Manseob Lee*

Abstract. Let f : M → M be a diffeomorphism of a compact
smooth manifoldM . In this paper, we show that C1 generically, if a
chain transitive set Λ is locally maximal then it admits a dominated
splitting. Moreover, C1 generically if a chain transitive set Λ of f
is locally maximal then it has zero entropy.

1. Introduction

Let M be a closed C∞ Riemannian manifold with dimM ≥ 2, and
let Diff(M) be the space of diffeomorphisms of M endowed with the C1

topology. Denote by d the distance on M induced from a Riemannian
metric ∥ · ∥ on the tangent bundle TM .

Let Λ be a closed f invariant set. We say that Λ admits a dominated
splitting if the tangent bundle TΛM has a continuous Df -invariant split-
ting E ⊕ F and there exist constants C > 0 and 0 < λ < 1 such that

∥Dxf
n|E(x)∥ · ∥Dxf

−n|F (fn(x))∥ ≤ Cλn

for all x ∈ Λ and n ≥ 0. In differentiable dynamical systems, the notion
is an important concept. For that, many results published in [3, 6, 7, 8,
9, 10, 11, 12, 14]. In fact, they were used to various dynamical properties
(expansive, continuum-wise expansive, continuum-wise fully expansive,
shadowing, inverse shadowing, average shadowing, asymptotic average
shadowing, etc). In the paper, we consider that if a closed invariant set
which is locally maximal then it admits a dominated splitting for C1

generic sense. An invariant closed set Λ is called chain transitive if for
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any δ > 0 and x, y ∈ Λ, there is δ-pseudo orbit {xi}ni=0(n ≥ 1) ⊂ Λ such
that x0 = x and xn = y.

We say that Λ is locally maximal if there is a neighborhood U of Λ
such that Λ =

∩
n∈Z f

n(U). Here the neighborhood U is called locally
maximal neighborhood of Λ. We say that a subset G ⊂ Diff(M) is resid-
ual if G contains the intersection of a countable family of open and dense
subsets of Diff(M); in this case G is dense in Diff(M). A property ”P”
is said to be (C1)-generic if ”P” holds for all diffeomorphisms which
belong to some residual subset of Diff(M). We use the terminology ”for
C1 generic f” to express ”there is a residual subset G ⊂ Diff(M) such
that for any f ∈ G . . .”. In the paper, we show the following which is a
main theorem.

Theorem A For C1 generic f ∈ Diff(M), if a chain transitive set Λ of
f is locally maximal then it admits a dominated splitting.

2. Proof of Theorem A

Let M be as before, and let f ∈ Diff(M). We say that p ∈ P (f) with

period π(p) is a sink if all the eigenvalues of Dpf
π(p) are less than 1,

and p ∈ P (f) with period π(p) is a source if all eigenvalues of Dpf
π(p)

is greater than 1.

Theorem 2.1. [1, Theorem 2.1] There is a residual set G ⊂ Diff(M)
such that given any chain transitive set Λ of f ∈ G then either there is
a dominated splitting over Λ or the set Λ is contained in the Hausdorff
limit of a sequence of periodic sinks or sources of f.

We also recall that the Hausdoroff distance between two compact
subsets A and B of M is given by:

dH(A,B) = max{sup
x∈A

d(x,B), sup
y∈B

d(y,A)}.

Lemma 2.2. There is a residual set G ⊂ Diff(M) such that for any
chain transitive set Λ of f ∈ G, if Λ is locally maximal and it does not
admits a dominated splitting then Λ contains a sink or a source.

Proof. Let f ∈ G and let U be a locally maximal neighborhood of
Λ. Suppose that Λ does not admits a dominated splitting. Since Λ is
compact, there is η > 0 such that Λ ⊂ Bη(Λ) ⊂ U. Since Λ does not
admits a dominated splitting, by Theorem 2.1, there is a sequence of
periodic sinks Orb(sn) such that Orb(sn) is the Hausdorff limit to Λ.
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For sufficiently large n, we have dH(Orb(sn),Λ) < η/2. Then there is
a periodic sink s ∈ Orb(sn) such that s ∈ Bη/2(Λ) ⊂ U. Since Λ is a
locally maximal in U , we know that s ∈ Λ. The case of a sequence of
periodic source is similar.

Proof of Theorem A. Let f ∈ G ∩D. Assume that a locally maximal
chain transitive set Λ does not admit a dominated splitting. Since Λ
does not admits a dominated splitting, by Lemma 2.2 we know that Λ
contains a sink or a source. Since Λ is a chain transitive set of f by [13,
Lemma 2.1], Λ has neither sinks nor sources. This is a contradiction
by Theorem 2.1. Thus C1 generically, a chain transitive set Λ admits a
dominated splitting if Λ is locally maximal. �

A compact f invariant set ∆ is said to be transitive if there is a point
x ∈ ∆ such that ω(x) = ∆, where ω(x) is the omega limit set of x. In
general, a chain transitive set is not a transitive set (see [4, Example
1.5]).

Lemma 2.3. [4, Corollary 2] There is a residual set C ⊂ Diff(M) such
that for any f ∈ C, a chain transitive set Λ of f is a transitive set ∆ of
f.

We say that Λ is hyperbolic if the tangent bundle TΛM has a Df -
invariant splitting Es⊕Eu and there exist constants C > 0 and 0 < λ <
1 such that

∥Dxf
n|Es

x
∥ ≤ Cλn and ∥Dxf

−n|Eu
x
∥ ≤ Cλn

for all x ∈ Λ and n ≥ 0. Let p be a hyperbolic periodic point of f .
Then the homoclinic class of Orb(p) is the set Hf (p) = Hf (Orb(p)) =
W s(p) t W u(p), and a neighborhood V of Orb(p), then the homoclinic
class of p relative to V is the set

HV (Orb(p)) = HV (p) = {x ∈ W s(p) t W u(p) : Orb(x) ⊂ V }.
It is clear that if the homoclinic class Hf (p) is locally maximal then it
is relative to V , that is, Hf (p) = HV (p).

Lemma 2.4. [2, Thereom 4.10] There is a residual set T ⊂ Diff(M)
such that for any transitive set Λ of f if the transitive set Λ is locally
maximal then Λ = Hf (p) for some periodic point p of f.

It is well known that if a diffeomorphism is More-Smale then it has
zero entropy. The set of diffomorphisms having zero entropy is contained
in the closure of the Morse-Smale diffeomorphism. Denote by MS the
set of all Mores-Smale diffeomorphisms. U = Diff(M2) \ MS. Then
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Pujals and Smbarino [15] proved that there exists an open and dense
set R ⊂ U such that every f ∈ R has a transversal homoclinic orbit.
In particular, the closure of the interior of the set formed by the diffeo-
morphisms having zero entropy, is equal to MS. In the paper, we have
zero entropy if for a C1 generic diffeomorphism f , a chain transitive set
is locally maximal.

Theorem 2.5. For C1 generic f ∈ Diff(M), if any chain transitive
set Λ of f is locally maximal then it has zero entropy.

Proof. Let f ∈ C ∩ T . Since f ∈ C ∩ T , by Lemmas 2.3 and 2.4 a
locally maximal chain transitive set Λ = Hf (p). Since Hf (p) a locally
maximal homclinic class, the homoclinic class Hf (p) is a relative ho-
moclinic class. Since the homoclinic class Hf (p) is relative homoclinic
class, by [2, Theorem 3.1] there is a measure µ ∈ Mf (Hf (p)) such that
hµ(f) = 0.
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