DOI QR코드

DOI QR Code

Engineering Human-like Sialylation in CHO Cells Producing hCTLA4-Ig by Overexpressing α2,6-Sialyltransferase

α2,6-Sialyltransferase 과발현을 통한 인간형 시알산 부가 hCTLA4-Ig 생산 CHO 세포주 제작

  • 임진혁 (인하대학교 공과대학 생물공학과) ;
  • 차현명 (인하대학교 공과대학 생물공학과) ;
  • 박혜진 (중앙대학교 약학대학 약학부) ;
  • 김하형 (중앙대학교 약학대학 약학부) ;
  • 김동일 (인하대학교 공과대학 생물공학과)
  • Received : 2017.07.12
  • Accepted : 2017.08.21
  • Published : 2017.09.30

Abstract

Sialylation is important in producing therapeutic proteins such as antibody, cytokine and fusion protein. Thus, enhancement of sialylation is usually performed in CHO cell cultures. ${\alpha}2,6$-Sialyltransferase (ST), which plays a key role in the attachment of ${\alpha}2,6-sialic$ acid, is present in human cells but not in Chinese hamster ovary (CHO) cells. Overexpression of ${\alpha}2,6-ST$ can be used for enhancing the degree of sialylation and achieving human-like glycosylation. In this study, we constructed CHO cells producing human cytotoxic T-lymphocyte antigen4-immunoglobulin (hCTLA4-Ig) as well as ${\alpha}2,6-ST$. Transfected CHO cells were selected using G418 and stable cell line was established. Profiles of viable cell density and hCTLA4-Ig titer in an overexpressed cell line were similar to those of a wild-type cell line. It was confirmed that the total amount of sialic acid was increased and ${\alpha}2,6-sialic$ acid was attached to the terminal residues of N-glycan of hCTLA4-Ig by ESI-LC-MS. Compared to 100% of ${\alpha}2,3-sialic$ acid in wild type cells, 70.9% of total sialylated N-glycans were composed of ${\alpha}2,6-sialic$ acid in transfected cells. In conclusion, overexpression of ${\alpha}2,6-ST$ in CHO cells led to the increase of both the amount of total sialylated N-glycan and the content of ${\alpha}2,6-sialic$ acid, which is more resemble to human-like structure of glycosylation.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. Jayapal, K. P., K. F. Wlaschin, W. -S. Hu, and M. G. S. Yap (2007) Recombinant protein therapeutics from CHO Cells - 20 years and counting. Chem. Eng. Prog. 103: 40-47.
  2. Mullard, A. (2017) 2016 FDA drug approvals. Nat. Rev. Drug Discov. 16: 73-76. https://doi.org/10.1038/nrd.2017.14
  3. Bongers, J., J. Devincentis, J. Fu, P. Huang, D. H. Kirkley, K. Leister, P. Liu, R. Ludwig, K. Rumney, L. Tao, W. Wu, and R. J. Russell (2011) Characterization of glycosylation sites for a recombinant IgG1 monoclonal antibody and a CTLA4-Ig fusion protein by liquid chromatography-mass spectrometry peptide mapping. J. Chromatogr. A. 1218: 8140-8149. https://doi.org/10.1016/j.chroma.2011.08.089
  4. Lalonde, M. E. and Y. Durocher (2017) Therapeutic glycoprotein production in mammalian cells. J. Biotechnol. 251: 128-140. https://doi.org/10.1016/j.jbiotec.2017.04.028
  5. Xu, X., H. Nagarajan, N. E. Lewis, S. Pan, Z. Cai, X. Liu, W. Chen, M. Xie, W. Wang, S. Hammond, M. R. Andersen, N. Neff, B. Passarelli, W. Koh, H. C. Fan, J. Wang, Y. Gui, K. H. Lee, M. J. Betenbaugh, S. R. Quake, I. Famili, B. O. Palsson, and J. Wang (2011) The genomic sequence of the Chinese hamster ovary (CHO)-K1 cell line. Nat. Biotechnol. 29:735-741. https://doi.org/10.1038/nbt.1932
  6. Bosques, C. J., B. E. Collins, J. W. Meador, H. Sarvaiya, J. L. Murphy, G. Dellorusso, D. A. Bulik, I. -S. Hsu, N. Washburn, S. F. Sipsey, J. R. Myette, R. Raman, Z. Shriver, R. Sasisekharan, and G. Venkataraman (2010) Chinese hamster ovary cells can produce galactose-a-1,3-galactose antigens on proteins. Nat. Biotechnol. 28: 1153-1156. https://doi.org/10.1038/nbt1110-1153
  7. Lingg, N., P. Zhang, Z. Song, and M. Bardor (2012) The sweet tooth of biopharmaceuticals: Importance of recombinant protein glycosylation analysis. Biotechnol. J. 7: 1462-1472. https://doi.org/10.1002/biot.201200078
  8. Ngantung, F. A., P. G. Miller, F. R. Brushett, G. L. Tang, and D. I. C. Wang (2006) RNA interference of sialidase improves glycoprotein sialic acid content consistency. Biotechnol. Bioeng. 95: 106-119. https://doi.org/10.1002/bit.20997
  9. Bork, K., W. Reutter, W. Weidemann, and R. Horstkorte (2007) Enhanced sialylation of EPO by overexpression of UDP-GlcNAc 2-epimerase/ManAc kinase containing a sialuria mutation in CHO cells. FEBS Lett. 581: 4195-4198. https://doi.org/10.1016/j.febslet.2007.07.060
  10. Weiss, P. and G. Ashwell (1989) The asialoglycoprotein receptor: Properties and modulation by ligand. Prog. Clin. Biol. Res. 300: 169-184.
  11. Wong, N. S. C., M. G. S. Yap, and D. I. C. Wang (2006) Enhancing recombinant glycoprotein sialylation through CMP-sialic acid transporter over expression in Chinese hamster ovary cells. Biotechnol. Bioeng. 93: 1005-1016. https://doi.org/10.1002/bit.20815
  12. Bragonzi, A., G. Distefano, L. D. Buckberry, G. Acerbis, C. Foglieni, D. Lamotte, G. Campi, A. Marc, M. R. Soria, N. Jenkins, and L. Monaco (2000) A new Chinese hamster ovary cell line expressing a2,6-sialyltransferase used as universal host for the production of human-like sialylated recombinant glycoproteins. Biochim. Biophys. Acta Gen. Subj. 1474: 273-282. https://doi.org/10.1016/S0304-4165(00)00023-4
  13. Raymond, C., A. Robotham, M. Spearman, M. Butler, J. Kelly, and Y. Durocher (2015) Production of a2,6-sialylated IgG1 in CHO cells. mAbs. 7: 571-583. https://doi.org/10.1080/19420862.2015.1029215
  14. Lin, N., J. Mascarenhas, N. R. Sealover, H. J. George, J. Brooks, K. J. Kayser, B. Gau, I. Yasa, P. Azadi, and S. Archer-Hartmann (2015) Chinese hamster ovary (CHO) host cell engineering to increase sialylation of recombinant therapeutic proteins by modulating sialyltransferase expression. Biotechnol. Prog. 31: 334-346. https://doi.org/10.1002/btpr.2038
  15. Jeong, Y. T., O. Choi, H. R. Lim, Y. D. Son, H. J. Kim, and J. H. Kim (2008), Enhanced sialylation of recombinant erythropoietin in CHO cells by human glycosyltransferase expression. J. Microbiol. Biotechnol. 18: 1945-1952.
  16. Bongers, J., J. Devincentis, J. Fu, P. Huang, D. H. Kirkley, K. Leister, P. Liu, R. Ludwig, K. Rumney, L. Tao, W. Wu, and R. J. Russell (2011) Characterization of glycosylation sites for a recombinant IgG1 monoclonal antibody and a CTLA4-Ig fusion protein by liquid chromatography-mass spectrometry peptide mapping. J. Chromatogr. A. 1218: 8140-8149. https://doi.org/10.1016/j.chroma.2011.08.089
  17. de Oliveira, B. K., D. Spencer, C. Barton, and N. Agarwal (2017) Site-specific monitoring of N-Glycosylation profiles of a CTLA4-Fc-fusion protein from the secretory pathway to the extracellular environment. Biotechnol. Bioeng. 114: 1550-1560. https://doi.org/10.1002/bit.26266
  18. Kildegaard, H. F., Y. Fan, J. W. Sen, B. Larsen, and M. R. Andersen (2016) Glycoprofiling effects of media additives on IgG produced by CHO cells in fed-batch bioreactors, Biotechnol. Bioeng. 113: 359-366. https://doi.org/10.1002/bit.25715