DOI QR코드

DOI QR Code

Characterization and Methanol Biosynthesis of a Methane-Oxidizing Bacterium, Methylomonas sp. SM4, Isolated from Rice Paddy Field Soil

논에서 분리한 메탄산화세균 Methylomonas sp. SM4의 특성과 메탄올 생합성

  • 박성민 (조선대학교 신재생에너지융합과) ;
  • ;
  • 김시욱 (조선대학교 신재생에너지융합과)
  • Received : 2017.04.14
  • Accepted : 2017.06.20
  • Published : 2017.06.30

Abstract

A methane-oxidizing bacterium was isolated from rice paddy field soil around Jeollanam-do province, Korea, and characterized. The isolate was gram-negative, orange pigmented and short rod ($1.1-1.2{\times}1.6-1.9{\mu}m$). It was catalase and urease-negative but oxidase-positive. The strain utilized methane and methanol as sole carbon and energy sources. It had an ability to grow with an optimum pH 7.0 and an optimum growth temperature $30^{\circ}C$. The strain was resistant to antibiotic polymyxin B but sensitive to streptomycin, kanamycin, ampicillin, chloramphenicol and rifampicin. The isolate required copper for their growth with concentration range of $2-25{\mu}M$, with an optimum of $10{\mu}M$. Under optimal culture condition, specific cell growth rate and generation time were found to be $0.046hr^{-1}$ and 15.13 hr, respectively. Phylogenetic analysis based on 16S rDNA sequences indicated that the strain formed a tight phylogenetic lineage with Methylomonas koyamae with a value of 99.4% gene sequence homology. So, we named the isolate as Methylomonas sp. SM4. 8.6 mM methanol was accumulated in the reaction mixture containing 70 mM sodium formate and 40 mM $MgCl_2$ (MDH inhibitor) under atmosphere of methane:air (40:60) mixture for 24 hr at $30^{\circ}C$.

Keywords

Acknowledgement

Supported by : 조선대학교

References

  1. IPPC (1997) Revised 1996 IPCC Guidelines-3. 1.33-1.35.
  2. Park, S. H. and S. Y. Choo (1993) Production of methanol by resting cells of Methylosinus trichosporium OB3b, Kor. J. Biotechonol. Bioeng. 8: 341-350.
  3. Hong, J. K. Methanol opening the de-petroleum era. http://www.lgeri.com/uploadFiles/ko/pdf/ind/indus938-3_20070525173614.pdf. (2007).
  4. Casey P. S., T. McAllister, and K. Foger (1994) Selective oxidation of methane to methanol at high pressures. Ind. Eng. Chem. Res. 33: 1120-1125. https://doi.org/10.1021/ie00029a008
  5. Corder, R. E., E. R. Johnson, J. L. Vega, E. C. Clausen, and J. L. Gaddy. Biological production of methanol from methane. http://www.anl.gov/PCS/acsfuel/preprint%20archive/Files/33_3_LOS%20ANGELES_09-88_0469.pdf (1986).
  6. Gal′chenko, V. F. and L. V. Andreev (1984) Taxonomy of obligate Methylotroph sp. pp. 269-281. In: R. L. Crawford and R. S. Hanson (eds.). Microbial growth on C1 compounds. American Society for Microbiology, Washington, D.C.
  7. Green, P. N. (1992) Taxonomy of methylotrophic bacteria. pp. 23-84. In: J. C. Murrell and D. P. Kelley (eds.). Microbial growth on C1 compounds. Intercept Press, Ltd., Andover, UK.
  8. Hanson, R. S., A. I. Netrusov, and K. Tsuji (1991) The obligate methanotrophic bacteria Methylococcus, Methylomonas, Methylosinus and related bacteria. pp. 2350-2365. In: A. Balows, H. G. Truper, M. Dworkin, W. Harder, and K. H. Schleifer (eds.). The prokaryotes. Springer-Verlag, New York.
  9. Whittenbury, R. and H. Dalton (1981) The methylotrophic bacteria. pp. 849-952. In: M. P. Starr, H. Stolph, H. G. Truper, A. Balows, and H. G. Schlegel (eds.), The prokaryotes. Springer-Verlag KG, Berlin.
  10. Whittenbury, R. and N. R. Krieg (1984) Methylococcaceae fam. nov. pp. 256-262. In: N. R. Krieg and J. G. Holt (eds.), Bergey's Manual of Systematic Bacteriology. vol. 1. The Williams & Wilkins Co., Baltimore.
  11. Bowman, J. P., L. I. Sly, P. D. Nicholas, and A. C. Hayward (1993) Revised taxonomy of the methanotrophs: Description of Methylobacter gen. nov., emendation of Methylococcus, validation of Methylosinus and Methylocystis species, and a proposal that the family Methylococcaceae includes only the group I methanotrophs. Int. J. Syst. Bacteriol. 43: 735-753. https://doi.org/10.1099/00207713-43-4-735
  12. Hanson, R. S. and T. E. Hanson (1996) Methanotrophic bacteria. Microbiol. Rev. 60: 439-471.
  13. Tavormina, P. L., R. Hatzenpichler, S. McGlynn, G. Chadwick, K. S. Dawson, S. A. Connon, and V. J. Orphan (2015) Methyloprofundus sedimenti gen. nov., sp. nov., an obligate methanotroph from ocean sediment belonging to the 'deep sea-1' clade of marine methanotrophs. Int. J. Syst. Evol. Microbiol. 65: 251-259. https://doi.org/10.1099/ijs.0.062927-0
  14. Deutzmann, J. S., M. Hoppert, and B. Schink (2014) Characterization and phylogeny of a novel methanotroph, Methyloglobulus morosus gen. nov., sp. nov. Syst. Appl. Microbiol. 37: 165-169. https://doi.org/10.1016/j.syapm.2014.02.001
  15. Hoefman, S., D. van der Ha, H. Iguchi, H. Yurimoto, Y. Sakara, N. Boon, P. Vandamme, K. Heylen, and P. De Vos (2014) Methyloparacoccus murrellii gen. nov., sp. nov., a methanotroph isolated from pond water. Int. J. Syst. Evol. Microbiol. 64: 2100-2107. https://doi.org/10.1099/ijs.0.057760-0
  16. Vorobev, A. V., M. Baani, N. V. Doronina, A. L. Brady, W. Liesack, P. F. Dunifield, and S. N. Dedysh (2011) Methyloferula stellata gen. nov., sp. nov., an acidophilic, obligately methanotrophic bacterium that possesses only a soluble methane monooxygenase. Int. J. Syst. Evol. Microbiol. 61: 2456-2463. https://doi.org/10.1099/ijs.0.028118-0
  17. Ogiso, T., C. Ueno, D. Dianou, T. V. Huy, A. Katayama, M. Kimura, and S. Asakawa (2012) Methylomonas koyamae sp. nov., a type I methane-oxidizing bacterium from floodwater of a rice paddy field. Int. J. Syst. Evol. Microbiol. 62: 1832-1837. https://doi.org/10.1099/ijs.0.035261-0
  18. Hoefman, S., K. Heylen, and P. De Vos (2014) Methylomonas lenta sp. nov., a methanotroph isolated from manure and a denitrification tank. Int. J. Syst. Evol. Microbiol. 64: 1210-1217. https://doi.org/10.1099/ijs.0.057794-0
  19. Kalyuzhnaya M. G., V. N. Khmelenina, S. Kotelnikova, L. Holmquist, K. Pedersen, and Y. A. Trotsenko (1999) Methylomonas scandinavica sp. nov., a new methanotrophic psychrotrophic bacterium isolated from deep igneous rock ground water of Sweden. Syst. Appl. Microbiol. 22: 565-572. https://doi.org/10.1016/S0723-2020(99)80010-1
  20. Romanovskaya, V. A., P. V. Rokitko, S. O. Shilin, and Y. R. Malashenko (2006) Emended description of Methylomonas rubra sp. nov. Microbiol. 75: 689-693. https://doi.org/10.1134/S0026261706060117
  21. Bowman, J. P., L. I. Sly, J. M. Cox, and A. C. Hayward (1990) Methylomonas fodinarum sp. nov. and Methylomonas aurantiaca sp. nov.: Two closely related type I obligate methanotrophs. Syst. Appl. Microbiol. 13: 279-287. https://doi.org/10.1016/S0723-2020(11)80199-2
  22. Koh, S. C., J. P. Bowman, and G. S. Sayler (1993) Soluble methane monooxygenase production and trichloroethylene degradation by a type I methanotroph, Methylomonas methanica 68-1. Appl. Environ. Microbiol. 59: 960-967.
  23. Dedysh, S. N., S. E. Belova, P. L. Bodelier, K. V. Smirnova, V. N. Khmelenina, A. Chidthaisong, Y. A. Trotsenko, W. Liesack, and P. F. Dunfield (2007) Methylocystis heyeri sp. nov., a novel type II methanotrophic bacterium possessing 'signature' fatty acids of type I methanotrophs. Int. J. Syst. Evol. Microbiol. 57: 472-479. https://doi.org/10.1099/ijs.0.64623-0
  24. Danilova, O. V., I. S. Kulichevskaya, O. N. Rozova, E. N. Detkova, P. L. Bodelier, Y. A. Trotsenko, and S. N. Dedysh (2013) Methylomonas paludis sp. nov., the first acid-tolerant member of the genus Methylomonas, from an acidic wetland. Int. J. Syst. Evol. Microbiol. 63: 2282-2289. https://doi.org/10.1099/ijs.0.045658-0
  25. Higgins, I. J. and J. R. Quayle (1970) Oxygenation of methane by methane grown Pseudomonas methanica and Methanomonas methanoxidans. Biochem. J. 118: 201-208. https://doi.org/10.1042/bj1180201
  26. Anthony C. (1986). Bacterial oxidation of methane and methanol. Adv. Microbial. Physiol. 27: 113-210.
  27. Mehta, P. K., S. Mishra, and T. K. Ghose (1987). Methanol accumulation by resting cells of Methylosinus trichosporium. J. Gen. Appl. Microbiol. 33: 221-229. https://doi.org/10.2323/jgam.33.221
  28. Sugimori D., M. Takeguchi, and I. Okura (1995) Biocatalytic methanol production from methane with Methylosinus trichosporium OB3b: an approach to improve methanol accumulation. Biotechnol. Lett. 17: 783-784. https://doi.org/10.1007/BF00129004
  29. Whittenbury, R., K. C. Phillips, and J. F. Wilkinson (1970) Enrichment, isolation and some properties of methane-utilizing bacteria. J. Gen. Microbiol. 61: 205-218. https://doi.org/10.1099/00221287-61-2-205
  30. Saitou, N. and M. Nei (1987) The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-442.
  31. Cox, J. M., D. J. Day, and C. Anthony (1992) The interaction of methanol dehydrogenase and its electron acceptor, cytochrome cL in methylotrophic bacteria. Biochim. Biophys. Acta 1119:97-106. https://doi.org/10.1016/0167-4838(92)90240-E
  32. Hur, D. H., J. G. Na, and E. Y. Lee (2017) Highly efficient bioconversion of methane to methanol using a novel type I Methylomonas sp. DH-1 newly isolated from brewery waste sludge. J. Chem. Technol. Biotechnol. 311-318.