DOI QR코드

DOI QR Code

Variability of Contribution of Picophytoplankton in the Phytoplankton Community in the Southwestern East Sea

가을철 동해 남서부해역 초미소식물플랑크톤의 전체 식물플랑크톤 생체량에 대한 기여도 변동성

  • PARK, MI OK (Pukyong National University, Department of Oceanography) ;
  • LEE, YE JI (Pukyong National University, Department of Oceanography)
  • Received : 2017.07.13
  • Accepted : 2017.08.31
  • Published : 2017.08.31

Abstract

Picophytoplankton, an important primary producer especially at the oligotrophic region, is known to contribute a significant portion of the total phytoplankton biomass in the East Sea of Korea. During autumn in the southwestern East Sea, frequent upwellings and oligotrophic conditions occur and annual variation of primary productivity is known to be significant. Moreover sea surface temperature (SST) of the East Sea is steeply increasing compared to global average increase, so various changes in marine ecosystem related with increase of SST are reported. Taking such circumstances into consideration, we measured the contribution from picophytoplankton fraction to total phytoplankton composition by size fraction of phytoplankton biomass during the autumn seasons from 2011, 2013 and 2015 and examined the variation of the phytoplankton composition. As a result of size fraction analyses, we found that the variation of contribution from picophytoplankton(<$3{\mu}m$) to total community of phytoplankton was high and the average fractions of picophytoplankton were measured as 38% (2011), 59% (2013), 7% (2015), respectively. The difference between measured SST and annual mean SST (${\Delta}T$) was highest ($+1.6^{\circ}C$) in autumn of 2013 and lowest ($-0.9^{\circ}C$) in autumn of 2015. The close positive correlation between ${\Delta}SST$ and fraction of picophytoplankton was confirmed($R^2$ > 0.9). The increase in SST at the southern East Sea was confirmed as one of the main environmental factors in the increase in the increase of the contribution from picophytoplankton. Monitoring of changes in the community structure of primary producers and the influences of the environmental factors including SST in the East Sea is necessary to understand the interactions of ecosystem of the East Sea and the climate change in the near future.

초미소플랑크톤은 빈영양해역의 중요한 일차생산자로서, 동해에서도 전체 식물플랑크톤의 생체량에 큰 기여를 하는 것으로 알려져 있다. 동해는 전 세계 평균에 비해 표층 수온이 가파르게 증가하여, 이에 따른 해양생태계의 다양한 변화가 보고되고 있다. 그러나, 기후변화에 따른 동해 생태계의 변화 중 가장 기본적인 일차생산자의 군집구조의 변동성에 대한 연구는 매우 부족한 까닭에 식물플랑크톤 군집 조성의 장기적인 변동성을 모니터링할 필요가 있다. 따라서 우리는 동해 남서부해역에서의 환경 변화에 따른 초미소플랑크톤의 생체량 기여도와 식물플랑크톤 군집구조의 변화를 알기 위해, 2011, 2013, 2015년 가을철에 초미소플랑크톤(<$3{\mu}m$)의 전체 식물플랑크톤에 대한 기여도를 측정하였다. 크기별 분급 결과, 초미소플랑크톤의 전체 Chl a 생체량에 대한 평균 기여도는 각각 2011년 약 38%, 2013년 59%, 2015년 7%로 연변동성이 크게 나타났다. 각 연도 별, 환경요인 중 평년대비 수온 변화(${\Delta}T$)는 2013년에 $+1.6^{\circ}C$로 최고치를, 그리고 2015년에 $-0.9^{\circ}C$로 가장 낮게 나타났다. 동해 남부 해역의 표층수온과 식물플랑크톤 군집 구조에 대한 초미소식물플랑크톤의 기여도 사이에 밀접한 양의 상관관계를 확인하였다($R^2$>0.9). 향후 기후 변화에 의한 동해에서의 해수 수온 증가가 미치는 일차생산자의 군집구조의 장기 변화에 대한 지속적인 모니터링과 이해가 필요하다고 판단된다.

Keywords

References

  1. 김아람, 2014. 동해 남부해역에서 냉수대 발생이 식물플랑크톤 군집에 미치는 영향. 부경대학교 석사학위 논문, 38-61 pp.
  2. 성기탁, 황재동, 한인성, 고우진, 서영상, 이재영, 2010. 한국 연근해 수온의 시공간적 장기 변동 특성. 해양환경안전학회지, 16(4): 353-360.
  3. 이영주, 2012. 황해의 동하계 식물플랑크톤군집 변동 및 일차생산력 변동 양상에 관한 고찰. 인하대학교 박사학위 논문.
  4. 전슬기, 2016. 동해 남서해역에서 용존태 유기질소 화합물이 식물플랑크톤의 생장에 미치는 영향. 부경대학교 석사학위논문, 74-75 pp.
  5. Arar, E.J. and G.B. Collins, 1997. Method 445.0: In Vitro Determination of Chlorophyll a and Phaeophytin a in Marine and Freshwater Algae by Fluorescence. United States Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory.
  6. Belkin, I.M., 2009. Rapid warming of large marine ecosystems. Prog. Oceanogr., 81: 207-213. https://doi.org/10.1016/j.pocean.2009.04.011
  7. Chiba, S. and T. Saino, 2002. Variation in mesozooplankton community structure in the Japan/East Sea (1991-1999) with possible influence of the ENSO scale climatic variability. Prog. Oceanogr., 213: 23-25.
  8. Chisholm, S.W., R.J. Olson, E.R. Zettler, R. Goericke, J.B. Waterbury and N.A. Welschmeyer, 1988. A novel free-living prochlorophyte abundant in the oceanic euphotic zone. Nature., 334: 340-343. https://doi.org/10.1038/334340a0
  9. Decembrini, F., C. Caroppo and M. Azzaro, 2008. Size structure and production of phytoplankton community and carbon pathways channelling in the Southern Tyrrhenian Sea (Western Mediterranean). Deep-Sea Res. II. doi:10.1016/j.dsr2.2008.07.022
  10. Harold, G.M., 2002. Autotrophic picoplankton : Their presence and significance in marine and freshwater ecosystems. Virginia Journal of Science, 53: 13-33.
  11. Jo, Y.H., L.C Breaker, Y.-H.,Tsemg and S.-W. Yeh, 2014. A temporal multiscale analysis of the water off the east coast of south Korea over the past four decades. Terr. Atoms. Ocean. Sci., 3: 415-434.
  12. Jones, P.D., K.E. Trenberth, P. Ambenje, R. Bojariu, D. Easterling, T. Klein and B. Soden, 2007. Observations: surface and atmospheric climate change. Climate Change The pysical Sciences Basis, 2007: 235-336.
  13. Joo, H.T., S.H. Son, J.W. Park, J.J. Kang, J.Y. Jeong, C.I. Lee, C.K. Kang and S.H. Lee, 2016. Long-Term Pattern of Primary Productivity in the East/Japan Sea Based on Ocean Color Data Derived from MODIS-Aqua. Remote Sens., 8, 25; doi:10.3390/rs8010025.
  14. Kang D.J., S. Park, Y.G. Kim, K. Kim and K.-R. Kim, 2003. A moving-boundary box model (MBBM) for oceans in change: An application to the East/Japan Sea. Geophys. Res. Lett., 30:1299.
  15. Kang, S.W., 2008. Study on the characteristics of phytoplankton community in East China Sea in spring and autumn, 2004. Department of Oceanography, Graduate School, Pukyong National University.
  16. Lin, C., X. Ning, J. Su, Y. Lin and B. Xu, 2005. Environmental changes and the responses of the ecosystems of the yellow sea during 1976-2000. J. Mar. Sys., 55: 223-234. https://doi.org/10.1016/j.jmarsys.2004.08.001
  17. Mackey, D.J., H.W. Higgins, M.D. Mackey and D. Holdsworth, 1998. Algal class abundances in the western equatorial Pacific: Estimation from HPLC measurements of Chloroplast pigments using CHEMTAX. Deep-Sea Res. I, 45: 1441-1468. https://doi.org/10.1016/S0967-0637(98)00025-9
  18. Moon C.R., D.J. Kang, M.O. Park, J.H. Noh, S.J. Yoo, J.E. Moon, K.H. Shin, Y.S. Kim, J.K. Choi and Y.S. Suh, 2014. An inter-laboratory comparison study on chlorophyll a determination in seawater. J. Kor. Soc. Oceanogr., 19: 76-87.
  19. Park, M.O., 2006. Composition and distribution of phytoplankton with size fraction results at Southwestern East/Japan Sea. Ocean Sci. J., 41(4): 301-313. https://doi.org/10.1007/BF03020632
  20. Park, M.O., S.W. Kang, C.I. Lee, T.S. Choi and F. Lantoine, 2008. Structure of the Phytoplanktonic communities in Jeju Strait and Northern East China Sea and Dinoflagellate Blooms in Spring 2004: Analysis of Photosynthetic Pigments. J. Kor. Soc. Oceanogr., 13(1): 27-41.
  21. Partensky, F., J. Blanchot and D. Vaulot, 1999. Differential distribution and ecology of Prochlorococcus and Synechococcus in oceanic waters: a review. Bullentin de 1'Institute Oceanographique, 19: 457-475.
  22. Partensky, F., J. Blanchot, F. Lantoine, J. Neveux and D. Marie, 1996. Vertical structure of picophytoplankton at different trophic sites of the tropical northeastern Atlantic Ocean. Deep-Sea Res. I, 43: 1191-1213. https://doi.org/10.1016/0967-0637(96)00056-8
  23. Riemann, Bo., 1978. Carotenoid interference in the spectrophotometric determination of chlorophyll degradation products from natural populations of phytoplankton. Limnol. Oceanogr., 23(5): 1059-1066. https://doi.org/10.4319/lo.1978.23.5.1059
  24. Suk M.S. and S.J. Yoo, 2002. Marine ecosystem responses to climate variability in the East Sea. Korea Ocean Research and Development Institute, Report No. BSPE 817-00-1396.
  25. Susan, M., 2012. Introduction to Marine Biogeochemistry, 2nd Ed. A-Jin Publishing, 500-501 pp.
  26. Yona, D., 2014. Diversity of Cyanobacteria Synechococcus spp. based on DNA Analysis and phycoerythrin Chromophores in the East Sea, Korea, master thesis, 68-70 pp.