DOI QR코드

DOI QR Code

Gas Permeation Characteristics by Chitosan/Pebax Composite Membranes

Chitosan/Pebax 복합 막에 의한 기체투과 특성

  • Kim, Sun Hee (Department of Industrial Chemistry, Sang Myung University) ;
  • Hong, Se Ryeong (College of General Studies, Sang Myung University)
  • Received : 2017.07.12
  • Accepted : 2017.08.23
  • Published : 2017.08.31

Abstract

Chitosan/Pebax composite membranes were prepared with 1 : 1, 1 : 2, 1 : 10, 1 : 30 mass ratio of pebax and chitosan. Gas permeation test were carried out under pressure $6kgf/cm^2$, 35, $45^{\circ}C$ and $65^{\circ}C$ at different temperatures. The gas permeability and selectivity ($CO_2/N_2$) of $N_2$ and $CO_2$ for the Chitosan/Pebax composite membranes were investigated. As the amount of Pebax added to chitosan was increased the gas permeability of both $N_2$ and $CO_2$ increased. The selectivity ($CO_2/N_2$) was 6.9~44.3 in the Chitosan/Pebax composite membranes. With the increase of contents of Pebax and the decrease of temperature, the selectivity ($CO_2/N_2$) increased.

Chitosan과 Pebax[poly(ether-block-amide)의 mass ratio를 1 : 1, 1 : 2, 1 : 10, 1 : 30으로 하여 Chitosan/Pebax 복합 막을 제조하였다. 기체투과 실험은 압력 $6kgf/cm^2$ 하에서 35, 45, $65^{\circ}C$로 온도를 달리하여 진행되었고, Chitosan/Pebax 복합 막에 대한 $N_2$$CO_2$의 기체투과도와 선택도($CO_2/N_2$) 등을 조사하였다. $N_2$$CO_2$의 투과기체에 대해 Chitosan에 가해지는 Pebax의 함량이 증가할수록 $N_2$$CO_2$의 기체투과도는 모두 증가하였다. 선택도($CO_2/N_2$)는 Chitosan/Pebax 복합 막에서 6.9~44.3의 값을 가지며, Pebax의 함량이 증가할수록 그리고 온도가 낮을수록 큰 값을 보였다.

Keywords

References

  1. J. H. Kim, "Photodegradability of blends of polystyrene and vinyl ketone polymers", Clean Technology, 4, 54 (1998).
  2. C. S. Ha and W. J. Cho, "Miscibility, properties and biodegradability of microbial polyestercontaining blends", Prog. Polym. Sci., 27, 759 (2002). https://doi.org/10.1016/S0079-6700(01)00050-8
  3. T. H. Abou-Aiad, "Morphology and dielectric properties of polyhydroxybutyrate (PHB)/Poly(methylmethacrylate) blends with some antimicrobial applications", Polym. Plast. Techno. Eng., 46, 435 (2007). https://doi.org/10.1080/03602550701244659
  4. W. K. Lee, "Carbon dioxide-reducible bio-degradable polymers", Clean Technology, 17, 191 (2011).
  5. M. Darder, M. Colilla, and E. Ruiz-Hitzky, "Biopolymer-clay nanocomposites based on chitosan intercalated in montmorillonite", Chem. Mater., 15, 3774 (2003). https://doi.org/10.1021/cm0343047
  6. J. S. Park, J. W. Rhim, B. G. Park, S. H. Kong, and S. Y. Nam, "Preparation and gas barrier properties of chitosan/clay nanocomposite film", Membr. J., 15, 247 (2005).
  7. Y. J. Yuk and K. H. Youm, "Affinity filtration chromatography of proteins by chitosan and chitin membranes: 1. Preparation and characterization of porous affinity membranes", Membr. J., 16, 39 (2006).
  8. S. P. Lee, S. W. Kim, E. S. Sohn, and J. S. Kang, "Technology trend analysis of chitosan", J. Chitin Chitosan, 8, 193 (2003).
  9. L. A. El-Azzami and E. A. Grulke, "Dual mode model for mixed gas permeation of $CO_2$, $H_2$, and $N_2$ through a dry chitosan membrane", J. Polym. Sci. B-Polym. Phys., 45, 2620 (2007). https://doi.org/10.1002/polb.21236
  10. L. A. El-Azzami and E. A. Grulke, "Carbon dioxide separation from hydrogen and nitrogen by fixed facilitated transport in swollen chitosan membranes", J. Membr. Sci., 323, 225 (2008). https://doi.org/10.1016/j.memsci.2008.05.019
  11. A. Ito, M. Sato, and T. Anma, "Permeability of $CO_2$ through chitosan membrane swollen by water vapor in feed gas", Die Angew. Makromol. Chem., 248, 85 (1997). https://doi.org/10.1002/apmc.1997.052480105
  12. J. S. Park, J. W. Rhim, B. G. Park, S. H. Kong, and S. Y. Nam, "Preparation and gas barrier properties of chitosan/clay nanocomposite film", Membr. J., 15, 247 (2005).
  13. M. Kurek, M. Scetar, A. Voilley, K. Galic, and F. Debeaufort, "Barrier properties of chitosan coated polyethylene", J. Membr. Sci., 403-404, 162 (2012). https://doi.org/10.1016/j.memsci.2012.02.037
  14. S. Despond, E. Espuche, and A. Domard, "Water sorption and permeation in chitosan films: Relation between gas permeability and relative humidity", J. Polym. Sci., 39, 3114 (2001). https://doi.org/10.1002/polb.10064
  15. D. K. Kweon, "Preparation and characteristics of chitosan-g-PDMS copolymer", Polym. Bull., 41, 645 (1998). https://doi.org/10.1007/s002890050413
  16. Y. Makino and T. Hirata, "Modified atmosphere packaging of fresh produce with a biodegradable laminate of chitosan-cellulose and polycaprolactone", Postharvest Biol. Technol., 10, 247 (1997). https://doi.org/10.1016/S0925-5214(96)01402-0
  17. S. I. Hong, J. H. Lee, H. J. Bae, S. Y. Koo, H. S. Lee, J. H. Choi, D. H. Kim, S. H. Park, and H. J. Park, "Effect of shear rate on structural, mechanical, and barrier properties of chitosan/montmorillonite nanocomposite film", J. Appl. Polym. Sci., 119, 2742 (2011). https://doi.org/10.1002/app.31767
  18. C. Tang, L. Xiang, J. Su, K. Wang, C. Yang, Q. Zhang, and Q. Fu, "Largely improved tensile properties of chitosan film via unique synergistric reinforcing effect of carbon nanotube and clay", J. Phys. Chem. B., 112, 3876 (2008). https://doi.org/10.1021/jp709977m
  19. S. F. Wang, L. Shen, W. D. Zhang, and Y. J. Tong, "Preparation and mechanical properties of chitosan/ carbon nanotubes composites", Biomacromolecules, 6, 3067 (2005). https://doi.org/10.1021/bm050378v
  20. C. Paluszkiewicz, E. Stodolak, M. Hasik, and M. Blazewicz, "FT-IR study of montmorillonite- chitosan nanocomposite materials", Spectrochim. Acta A: Mol. Biomol. Spectrosc., 79, 784 (2011). https://doi.org/10.1016/j.saa.2010.08.053
  21. H. B. Kim, M. W. Lee, W. K Lee, and S. H. Lee, "Permeation properties of single gases ($N_2$, $O_2$, $SF_6$, $CH_4$) through PDMS and PEBAX membranes", Membr. J., 22, 201 (2012).
  22. R. S. Muralia, A. F. Ismailb, M. A. Rahmanb, and S. Sridhara, "Mixed matrix membranes of Pebax-1657 loaded with 4A zeolite for gaseous separations", Sep. Purif. Technol., 129, 1 (2014). https://doi.org/10.1016/j.seppur.2014.03.017
  23. K. Zarshenas, A. Raisi, and A. Aroujalian, "Mixed matrix membranes of nano-zeolite NaX/poly(etherblock- amide) for gas separation applications", J. Membr. Sci., 510, 270 (2016). https://doi.org/10.1016/j.memsci.2016.02.059
  24. R. S. Murali, S. Sridhar, T. Sankarshana, and Y. V. L. Ravikumar, "Gas permeation behavior of Pebax-1657 nanocomposite membrane incorporated with multiwalled carbon nanotubes", Ind. Eng. Chem. Res., 49, 6530 (2010). https://doi.org/10.1021/ie9016495
  25. H. J. Kim, "Gas permeation properties of carbon dioxide and methane for PEBAXTM/TEOS hybrid membranes", Korean Chem. Eng. Res., 49, 460 (2011). https://doi.org/10.9713/kcer.2011.49.4.460
  26. M. M. Rahman, S. Shishatskiy, C. Abetz, P. Georgopanos, S. Neumann, M. M. Khan, V. Filiz, and V. Abetz, "Influence of temperature upon properties of tailor-made PEBAX MH 1657 nanocomposite membranes for post-combustion $CO_2$ capture", J. Membr. Sci., 469, 344 (2014). https://doi.org/10.1016/j.memsci.2014.06.048
  27. L. M. Robeson, "The upper bound revisited", J. Membr. Sci., 320, 390 (2008). https://doi.org/10.1016/j.memsci.2008.04.030
  28. R. D. Raharjo, B. D. Freeman, D. R. Paul, G. C. Sarti, and E. S. Sanders, "Pure and mixed gas $CH_4$ and n-$C_4H_{10}$ permeability and diffusivity in poly(dimethylsiloxane)", J. Membr. Sci., 306, 75 (2007). https://doi.org/10.1016/j.memsci.2007.08.014