DOI QR코드

DOI QR Code

Poly(ethylene oxide)/AgBF4/Al(NO3)3/Ag2O Composite Membrane for Olefin/Paraffin Separation

올레핀/파라핀 분리를 위한 poly(ethylene oxide)/AgBF4/Al(NO3)3/Ag2O 복합체 분리막

  • 정수영 (상명대학교 자연과학대학 화학과) ;
  • 강상욱 (상명대학교 자연과학대학 화학과)
  • Received : 2017.07.27
  • Accepted : 2017.08.16
  • Published : 2017.08.31

Abstract

For the separation of olefins/paraffins, $Poly(ethylene oxide)(PEO)/AgBF_4/Al(NO_3)_3/Ag_2O$ composite membranes were prepared. When $Ag_2O$ was introduced, the initial selectivity and permeance of composite membranes were observed to be 13.7 and 21.7 GPU, respectively. The increase in performance compared to the initial performance of $PEO/AgBF_4/Al(NO_3)_3$ membrane (selectivity 13 and permeance 7.5 GPU) was thought to be due to the increase of Ag ion activity due to the addition of $Ag_2O$. However, performance degradation over time was observed, which was thought to be due to the polymer matrix PEO. Since the PEO polymer could not stabilize the $Ag_2O$ particles, the $Ag_2O$ particles becmae aggregated together as the solvent evaporates, and $Ag_2O$ acts as a barrier. As a result, the permeance decreases over time.

올레핀/파라핀 분리를 위해 $Poly(ethylene oxide)(PEO)/AgBF_4/Al(NO_3)_3/Ag_2O$ 복합막이 제조되었으며, $Ag_2O$가 도입되었을 때, 복합체 분리막의 초기성능은 선택도 13.7과 투과도 21.7 GPU로 관찰되었다. $PEO/AgBF_4/Al(NO_3)_3$ 분리막의 성능(선택도 13와 투과도 7.5 GPU)에 비해서 초기성능이 증가한 이유는 $Ag_2O$의 첨가로 인한 Ag ion의 활성도 증가로 생각되었다. 하지만 시간에 따른 성능저하 현상이 관찰되었는데 이는 고분자 matrix인 PEO 때문인 것으로 생각되었다. PEO 고분자는 $Ag_2O$ 입자를 안정화 시킬 수 없기 때문에 용매가 증발하면서 $Ag_2O$ 입자끼리 뭉치게 되고, $Ag_2O$가 barrier 역할을 하게 돼서 시간이 지나면 투과도가 감소하는 것으로 분석되었다.

Keywords

References

  1. R. B. Eldridge, "Olefin/paraffin separation technology: Are view", Ind. Eng. Chem. Res., 32, 2208 (1993). https://doi.org/10.1021/ie00022a002
  2. D. J. Safarik and R. B. Eldridge, "Olefin/paraffin separations by reactive absorption: A review", Ind. Eng. Chem. Res., 37, 2571 (1998). https://doi.org/10.1021/ie970897h
  3. T. C. Merkel, R. Blanc, I. Ciobanu, B. Firat, A. Suwarlim, and J. Zeid, "Silver salt facilitated transport membranes for olefin/paraffin separations: Carrier instability and a novel regeneration method", J. Membr. Sci., 447, 177 (2013). https://doi.org/10.1016/j.memsci.2013.07.010
  4. M. Askari and T. S. Chung, "Natural gas purification and olefin/paraffin separation using thermal cross-linkable co-polyimide/ZIF-8 mixed matrix membranes", J. Membr. Sci., 444, 173 (2013). https://doi.org/10.1016/j.memsci.2013.05.016
  5. K. S. Liaoa, S. Japipa, J. Y. Laib, and T. S. Chung, "Boron-embedded hydrolyzed PIM-1 carbon membranes for synergistic ethylene/ethane purification", J. Membr. Sci., 534, 92 (2017). https://doi.org/10.1016/j.memsci.2017.04.017
  6. M. Fallanza, A. Ortiz, D. Gorri, and I. Ortiz, "Polymer-ionic liquid composite membranes for propane/propylene separation by facilitated transport", J. Membr. Sci., 444, 164 (2013). https://doi.org/10.1016/j.memsci.2013.05.015
  7. R. J. Swaidan, X. Ma, and I. Pinnau, "Spirobisindane-based polyimide as efficient precursor of thermally-rearranged and carbon molecular sieve membranes for enhanced propylene/propane separation", J. Membr. Sci., 520, 983 (2016). https://doi.org/10.1016/j.memsci.2016.08.057
  8. D. F. Sanders, Z. P. Smith, R. Guo, L. M. Robenson, and J. E. McGrath, "Energy-efficient polymeric gas separation membranes for a sustainable future: A review", Polymer, 54, 4729 (2013). https://doi.org/10.1016/j.polymer.2013.05.075
  9. Y. S. Kang, S. W. Kang, H. Kim, J. H. Kim, J. Won, C. K. Kim, and K. Char, "Interaction with olefins of the partially polarized surface of silver nanoparticles activated by p-benzoquinone and its implications for facilitated olefin transport", AdV. Mater., 19, 475 (2007). https://doi.org/10.1002/adma.200601009
  10. S. W. Kang, K. Char, and Y. S. Kang, "Novel application of partially positively charged silver nanoparticles for facilitated transport in olefin/paraffin separation membranes", Chem. Mater., 20, 1308 (2008). https://doi.org/10.1021/cm071516l
  11. Y. S. Park, J. Won, and Y. S. Kang, "Facilitated transport of olefin through solid PAAm and PAAm-graft composite membranes with silver ions", J. Membr. Sci., 183, 163 (2001). https://doi.org/10.1016/S0376-7388(00)00589-5
  12. I. Pinnau, L. G. Tory, and C. Casillas, "Olefin separation membrane and process", US Patent, 5,670,051 (1997).
  13. J. H. Kim, Y. S. Kang, and J. Won, "Silver polymer electrolyte membranes for facilitated olefin transport: carrier properties, transport mechanism and separation performance", Macromol. Res., 12, 145 (2004). https://doi.org/10.1007/BF03218383
  14. I. Pinnau and L. G. Toy, "Solid polymer electrolyte composite membranes for olefin/paraffin separation", J. Membr. Sci., 184, 39 (2001). https://doi.org/10.1016/S0376-7388(00)00603-7
  15. S. U. Hong, J. Y. Kim, and Y. S. Kang, "Effect of feed pressure on facilitated olefin transport through solid polymer electrolyte membranes", Polym. Adv. Technol., 12, 177 (2001). https://doi.org/10.1002/pat.128
  16. J. H. Kim, B. R. Min, H. S. Kim, J. Won, and Y. S. Kang, "Facilitated transport of ethylene across polymermembranes containing silver salt: effect of HBF4 on the photoreduction of silver ions", J. Membr. Sci., 212, 283 (2003). https://doi.org/10.1016/S0376-7388(02)00451-9
  17. S. W. Kang, J. H. Kim, K. S. Oh, J. Won, K. Char, H. S. Kim, and Y. S. Kang, "Highly stabilized silver polymer electrolytes and their application to facilitated olefin transport membranes", J. Membr. Sci., 236, 163 (2004). https://doi.org/10.1016/j.memsci.2004.02.020
  18. J. H. Kim, B. R. Min, C. K. Kim, J. Won, and Y. S. Kang, "New insights into the coordination mode of silver ions dissolved in poly(2-ethyl-2-oxazoline) and its relation to facilitated olefin transport", Macromolecules, 35, 5250 (2002). https://doi.org/10.1021/ma020179t
  19. Y. Yoon, J. Won, and Y. S. Kang, "Polymer electrolyte membranes containing silver ion for facilitated olefin transport", Macromolecules, 33, 3185 (2000). https://doi.org/10.1021/ma0000226
  20. J. H. Kim, B. R. Min, J. Won, and Y. S. Kang, "Anomalous temperature dependence of facilitated propylene transport in silver polymer electrolyte membranes", J. Membr. Sci., 227, 197 (2003). https://doi.org/10.1016/j.memsci.2003.08.026
  21. S. W. Kang and Y. S. Kang, "Silver nanoparticles stabilized by crosslinked poly(vinyl pyrrolidone)and its application for facilitated olefin transport", J. Colloid Interf. Sci., 353, 83 (2011). https://doi.org/10.1016/j.jcis.2010.09.033
  22. D. S. Song, Y. S. Kang, and S. W. Kang, "Highly permeable and stabilized olefin transport membranes based on a Poly(ethylene oxide) Matrix and $Al(NO_3)_3", J. Membr. Sci., 474, 273 (2015). https://doi.org/10.1016/j.memsci.2014.09.050
  23. S. W. Kang, J. H. Kim, J. Won, and Y. S. Kang, "Suppression of silver ion reduction by $Al(NO_3)_3 complex and its application to highly stabilized olefin transport membranes" J. Membr. Sci., 445, 156 (2013). https://doi.org/10.1016/j.memsci.2013.06.010
  24. K. W. Yoon and S. W. Kang, "Preparation of Polyvinylpyrrolidone/$AgBF_4/Al(NO_3)_3$ Electrolyte Membranes for Facilitated Gas Transport", Membr. J., 26, 38 (2016). https://doi.org/10.14579/MEMBRANE_JOURNAL.2016.26.1.38
  25. Y. S. Park, Y. S. Kang, and S. W. Kang, "Cost-effective facilitated olefin transport membranes consisting of polymer/$AgCF_3SO_3/Al(NO_3)_3$ with long-term stability", J. Membr. Sci., 495, 61 (2015). https://doi.org/10.1016/j.memsci.2015.07.061
  26. Y. S. Park, S. Chun, Y. S. Kang, and S. W. Kang, "Durable poly(vinyl alcohol)/$AgBF_4/Al(NO_3)_3$ complex membrane with high permeance for propylene/$AgBF_4/Al(NO_3)_3$ propane separation", Sep. Purif. Technol., 174, 39 (2017). https://doi.org/10.1016/j.seppur.2016.09.050
  27. S. Jeong and S. W. Kang, "Effect of $Ag_2O$ nanoparticles on long-term stable polymer/AgBF4/ $Al(NO_3)_3 complex membranes for olefin/paraffin separation", Chem. Eng. J., 327, 500 (2017). https://doi.org/10.1016/j.cej.2017.06.117
  28. K. W. Yoon, Y. S. Kang, and S. W. Kang, "Activated Ag ions and enhanced gas transport by incorporation of KIT-6 for facilitated olefin transport membranes", J. Membr. Sci., 513, 95 (2016). https://doi.org/10.1016/j.memsci.2016.04.023