DOI QR코드

DOI QR Code

Prediction of Water Usage in Pig Farm based on Machine Learning

기계학습을 이용한 돈사 급수량 예측방안 개발

  • Lee, Woongsup (Department of Information and Communication Engineering, Gyeongsang National University) ;
  • Ryu, Jongyeol (Department of Information and Communication Engineering, Gyeongsang National University) ;
  • Ban, Tae-Won (Department of Information and Communication Engineering, Gyeongsang National University) ;
  • Kim, Seong Hwan (Department of Information and Communication Engineering, Gyeongsang National University) ;
  • Choi, Heechul (Livestock Environment Division, National Institute of Animal Science)
  • Received : 2017.07.04
  • Accepted : 2017.07.25
  • Published : 2017.08.31

Abstract

Recently, accumulation of data on pig farm is enabled through the wide spread of smart pig farm equipped with Internet-of-Things based sensors, and various machine learning algorithms are applied on the data in order to improve the productivity of pig farm. Herein, multiple machine learning schemes are used to predict the water usage in pig farm which is known to be one of the most important element in pig farm management. Especially, regression algorithms, which are linear regression, regression tree and AdaBoost regression, and classification algorithms which are logistic classification, decision tree and support vector machine, are applied to derive a prediction scheme which forecast the water usage based on the temperature and humidity of pig farm. Through performance evaluation, we find that the water usage can be predicted with high accuracy. The proposed scheme can be used to detect the malfunction of water system which prevents the death of pigs and reduces the loss of pig farm.

최근 사물 인터넷 센서가 설치된 스마트 돈사의 보급을 통해 돈사 관련 빅데이터 축적이 가능해졌고, 다양한 기계 학습방안들이 수집된 데이터에 적용되어 축산농가의 생산성을 향상시키고 있다. 본 연구에서는 다양한 기계학습 방안을 이용하여 돈사관리에서 가장 중요한 요소 중 하나인 급수량을 예측하였다. 구체적으로 실제 돈사에서 수집된 데이터에 회귀 방안인 선형회귀, 회귀트리 및 아다부스트 회귀 방안과 분류 방안인 로지스틱 분류, 결정트리 및 서포트 벡터 머신 (SVM) 분류방안을 적용하여 돈사의 온도와 습도를 기반으로 급수량을 예측하였다. 성능 분석을 통해서 제안한 방안이 높은 정확도로 급수량을 예측하는 것을 확인할 수 있었다. 제안한 방안은 돈사의 급수시설 이상을 조기에 파악하는데 활용되어 가축을 폐사를 막고 돈사 생산성을 높이는데 활용될 수 있다.

Keywords

References

  1. K. Han, W. Lee, and K. Sung, "Development of a model to analyze the relationship between smart pig-farm environmental data and daily weight increase based on decision tree," Journal of Korea Institute of information and communication engineering, vol. 20, no. 12, pp.2348-2354, Dec. 2016. https://doi.org/10.6109/jkiice.2016.20.12.2348
  2. M. S. Lee and Y.C. Choe, "Forecasting Sow's Productivity using the Machine Learning Models," Journal of Agricultural Extension & Community Development, vol. 16, no. 4, pp. 939-965, Dec. 2009.
  3. S. Shahinfar, D. Page, J. Guenther, V. Cabrera, P. Fricke and K. Weigel, "Prediction of insemination outcomes in Holstein dairy cattle using alternative machine learning algorithms," Journal of dairy science, vol. 97, no. 2, pp.731-742, Feb. 2014. https://doi.org/10.3168/jds.2013-6693
  4. W. Lee, S. Kim, J. Ryu, and T. Ban, "Fast Detection of Disease in Livestock based on Deep Learning," Journal of Korea Institute of information and communication engineering, vol. 21, no. 5, pp.1009-1015, May 2017. https://doi.org/10.6109/JKIICE.2017.21.5.1009
  5. M. A. Kashiha, C. Bahr, S. Ott, C. P. Moons, T. A. Niewold, F. Tuyttens and D. Berckmans, "Automatic monitoring of pig locomotion using image analysis," Livestock Science, vol. 159, no. 1, pp.141-148, Jan. 2014. https://doi.org/10.1016/j.livsci.2013.11.007
  6. S. J. Roberts, R. Cain and M. S. Dawkins, "Prediction of welfare outcomes for broiler chickens using Bayesian regression on continuous optical flow data," Journal of the Royal Society interface, vol. 9, no. 77, pp.3436-3443, Sep. 2012. https://doi.org/10.1098/rsif.2012.0594
  7. K. Kim, K. Kim, J. Kim, K. Seol, J. Hong, Y. Jung, J. Park, and Y. Kim, "Changes of serum electrolytes and hematological profiles in Yorkshire at a high ambient temperature" Journal of Agriculture and Life Science, vol. 49, no. 1, pp.103-113, Nov. 2014. https://doi.org/10.14397/jals.2015.49.1.103
  8. B. Fridrich, D. Krcmar, B. Dalmacija, J. Molnar, V. Pesic, M. Kragulj, and N. Varga, "Impact of wastewater from pig farm lagoons on the quality of local groundwater," Agricultural Water Management, vol. 135, no. 1, pp. 40-53, Mar. 2014. https://doi.org/10.1016/j.agwat.2013.12.014

Cited by

  1. 기계학습기반 양돈생산성 예측방안 vol.24, pp.1, 2017, https://doi.org/10.6109/jkiice.2020.24.1.130