DOI QR코드

DOI QR Code

Low-Dose Bisphenol A Increases Bile Duct Proliferation in Juvenile Rats: A Possible Evidence for Risk of Liver Cancer in the Exposed Population?

  • Jeong, Ji Seong (Developmental and Reproductive Toxicology Research Group, Korea Institute of Toxicology) ;
  • Nam, Ki Taek (Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine) ;
  • Lee, Buhyun (Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine) ;
  • Pamungkas, Aryo Dimas (College of Pharmacy, Korea University) ;
  • Song, Daeun (College of Pharmacy, Ewha Womans University) ;
  • Kim, Minjeong (College of Pharmacy, Ewha Womans University) ;
  • Yu, Wook-Joon (Developmental and Reproductive Toxicology Research Group, Korea Institute of Toxicology) ;
  • Lee, Jinsoo (Developmental and Reproductive Toxicology Research Group, Korea Institute of Toxicology) ;
  • Jee, Sunha (Department of Epidemiology and Health Promotion, and Institute for Health Promotion, Graduate School of Public Health, Yonsei University) ;
  • Park, Youngja H. (College of Pharmacy, Korea University) ;
  • Lim, Kyung-Min (College of Pharmacy, Ewha Womans University)
  • Received : 2017.07.20
  • Accepted : 2017.08.03
  • Published : 2017.09.01

Abstract

Increasing concern is being given to the association between risk of cancer and exposure to low-dose bisphenol A (BPA), especially in young-aged population. In this study, we investigated the effects of repeated oral treatment of low to high dose BPA in juvenile Sprague-Dawley rats. Exposing juvenile rats to BPA (0, 0.5, 5, 50, and 250 mg/kg oral gavage) from post-natal day 9 for 90 days resulted in higher food intakes and increased body weights in biphasic dose-effect relationship. Male mammary glands were atrophied at high dose, which coincided with sexual pre-maturation of females. Notably, proliferative changes with altered cell foci and focal inflammation were observed around bile ducts in the liver of all BPA-dosed groups in males, which achieved statistical significance from 0.5 mg/kg (ANOVA, Dunnett's test, p<0.05). Toxicokinetic analysis revealed that systemic exposure to BPA was greater at early age (e.g., 210-fold in $C_{max}$, and 26-fold in AUC at 50 mg/kg in male on day 1 over day 90) and in females (e.g., 4-fold in $C_{max}$ and 1.6-fold in AUC at 50 mg/kg vs. male on day 1), which might have stemmed from either age- or gender-dependent differences in metabolic capacity. These results may serve as evidence for the association between risk of cancer and exposure to low-dose BPA, especially in young children, as well as for varying toxicity of xenobiotics in different age and gender groups.

Keywords

References

  1. Ahmed, R. G. (2016) Maternal bisphenol A alters fetal endocrine system:Thyroid adipokine dysfunction. Food Chem. Toxicol. 95, 168-174. https://doi.org/10.1016/j.fct.2016.06.017
  2. Beck, M. J., Padgett, E. L., Bowman, C. J., Wilson, D. T., Kaufman, L. E., Varsho, B. J., Stump, D. G., Nemec, M. D. and Holson, J. F. (2006) Nonclinical juvenile toxicity testing. In Developmental and Reproductive Toxicology: A Practical Approach, pp. 263-328.
  3. Bowman, C. J., Chmielewski, G., Lewis, E., Ripp, S., Sawaryn, C. M. and Cross, D. M. (2011) Juvenile toxicity assessment of anidulafungin in rats: an example of navigating case-by-case study design through scientific and regulatory challenges. Birth Defects Res. B Dev. Reprod. Toxicol. 92, 333-344.
  4. Buscher, B., van de Lagemaat, D., Gries, W., Beyer, D., Markham, D. A., Budinsky, R. A., Dimond, S. S., Nath, R. V., Snyder, S. A. and Hentges, S. G. (2015) Quantitative analysis of unconjugated and total bisphenol A in human urine using solid-phase extraction and UPLC-MS/MS: method implementation, method qualification and troubleshooting. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 1005, 30-38. https://doi.org/10.1016/j.jchromb.2015.09.020
  5. Calafat, A. M., Ye, X., Wong, L. Y., Reidy, J. A. and Needham, L. L. (2008) Exposure of the U.S. population to bisphenol A and 4-tertiary-octylphenol: 2003-2004. Environ. Health Perspect. 116, 39-44.
  6. Churchwell, M. I., Camacho, L., Vanlandingham, M. M., Twaddle, N. C., Sepehr, E., Delclos, K. B., Fisher, J. W. and Doerge, D. R. (2014) Comparison of life-stage-dependent internal dosimetry for bisphenol A, ethinyl estradiol, a reference estrogen, and endogenous estradiol to test an estrogenic mode of action in Sprague Dawley rats. Toxicol. Sci. 139, 4-20. https://doi.org/10.1093/toxsci/kfu021
  7. Delclos, K. B., Camacho, L., Lewis, S. M., Vanlandingham, M. M., Latendresse, J. R., Olson, G. R., Davis, K. J., Patton, R. E., da Costa, G. G., Woodling, K. A., Bryant, M. S., Chidambaram, M., Trbojevich, R., Juliar, B. E., Felton, R. P. and Thorn, B. T. (2014) Toxicity evaluation of bisphenol A administered by gavage to Sprague Dawley rats from gestation day 6 through postnatal day 90. Toxicol. Sci. 139, 174-197. https://doi.org/10.1093/toxsci/kfu022
  8. Doerge, D. R., Twaddle, N. C., Vanlandingham, M. and Fisher, J. W. (2010) Pharmacokinetics of bisphenol A in neonatal and adult Sprague-Dawley rats. Toxicol. Appl. Pharmacol. 247, 158-165. https://doi.org/10.1016/j.taap.2010.06.008
  9. Draganov, D. I., Markham, D. A., Beyer, D., Waechter, J. M., Dimond, S. S., Budinsky, R. A., Shiotsuka, R. N., Snyder, S. A., Ehman, K. D. and Hentges, S. G. (2015) Extensive metabolism and routedependent pharmacokinetics of bisphenol A (BPA) in neonatal mice following oral or subcutaneous administration. Toxicology 333, 168-178. https://doi.org/10.1016/j.tox.2015.04.012
  10. Edginton, A. N. and Ritter, L. (2009) Predicting plasma concentrations of bisphenol A in children younger than 2 years of age after typical feeding schedules, using a physiologically based toxicokinetic model. Environ. Health Perspect. 117, 645-652. https://doi.org/10.1289/ehp.0800073
  11. Goodman, J. E., Peterson, M. K., Hixon, M. L. and Shubin, S. P. (2017) Derivation of an oral Maximum Allowable Dose Level for Bisphenol A. Regul. Toxicol. Pharmacol. 86, 312-318. https://doi.org/10.1016/j.yrtph.2017.03.024
  12. Iso, T., Watanabe, T., Iwamoto, T., Shimamoto, A. and Furuichi, Y. (2006) DNA damage caused by bisphenol A and estradiol through estrogenic activity. Biol. Pharm. Bull. 29, 206-210. https://doi.org/10.1248/bpb.29.206
  13. Izzotti, A., Kanitz, S., D'Agostini, F., Camoirano, A. and De Flora, S. (2009) Formation of adducts by bisphenol A, an endocrine disruptor, in DNA in vitro and in liver and mammary tissue of mice. Mutat. Res. 679, 28-32. https://doi.org/10.1016/j.mrgentox.2009.07.011
  14. Johnson, J. M., Yu, T., Strobel, F. H. and Jones, D. P. (2010) A practical approach to detect unique metabolic patterns for personalized medicine. Analyst 135, 2864-2870. https://doi.org/10.1039/c0an00333f
  15. Jones, B. A., Wagner, L. S. and Watson, N. V. (2016) The effects of Bisphenol A exposure at different developmental time points in an androgen-sensitive neuromuscular system in male rats. Endocrinology 157, 2972-2977. https://doi.org/10.1210/en.2015-1574
  16. Kim, C. S., Kim, J., Lee, Y. M., Sohn, E. and Kim, J. S. (2016) Esculetin, a coumarin derivative, inhibits aldose reductase activity in vitro and cataractogenesis in galactose-fed rats. Biomol. Ther. (Seoul) 24, 178-183. https://doi.org/10.4062/biomolther.2015.101
  17. Kwintkiewicz, J., Nishi, Y., Yanase, T. and Giudice, L. C. (2010) Peroxisome proliferator-activated receptor-${\gamma}$ mediates bisphenol A inhibition of FSH-stimulated IGF-1, aromatase, and estradiol in human granulosa cells. Environ. Health Perspect. 118, 400-406.
  18. Le, H. H., Carlson, E. M., Chua, J. P. and Belcher, S. M. (2008) Bisphenol A is released from polycarbonate drinking bottles and mimics the neurotoxic actions of estrogen in developing cerebellar neurons. Toxicol. Lett. 176, 149-156. https://doi.org/10.1016/j.toxlet.2007.11.001
  19. Leibowitz, S. F., Akabayashi, A., Alexander, J., Karatayev, O. and Chang, G. Q. (2009) Puberty onset in female rats: relationship with fat intake, ovarian steroids and the peptides, galanin and enkephalin, in the paraventricular and medial preoptic nuclei. J. Neuroendocrinol. 21, 538-549. https://doi.org/10.1111/j.1365-2826.2009.01870.x
  20. Ljunggren, S. A., Iggland, M., ROnn, M., Lind, L., Lind, P. and Karlsson, H. (2016) Altered heart proteome in fructose-fed Fisher 344 rats exposed to bisphenol A. Toxicology 347-349, 6-16. https://doi.org/10.1016/j.tox.2016.02.007
  21. Menard, S., Guzylack-Piriou, L., Lencina, C., Leveque, M., Naturel, M., Sekkal, S., Harkat, C., Gaultier, E., Olier, M. and Garcia-Villar, R. (2014) Perinatal exposure to a low dose of bisphenol A impaired systemic cellular immune response and predisposes young rats to intestinal parasitic infection. PLoS ONE 9, e112752. https://doi.org/10.1371/journal.pone.0112752
  22. Marmugi, A., Ducheix, S., Lasserre, F., Polizzi, A., Paris, A., Priymenko, N., Bertrand-Michel, J., Pineau, T., Guillou, H., Martin, P. G. and Mselli-Lakhal, L. (2012) Low doses of bisphenol A induce gene expression related to lipid synthesis and trigger triglyceride accumulation in adult mouse liver. Hepatology 55, 395-407. https://doi.org/10.1002/hep.24685
  23. Miyaguchi, T., Suemizu, H., Shimizu, M., Shida, S., Nishiyama, S., Takano, R., Murayama, N. and Yamazaki, H. (2015) Human urine and plasma concentrations of bisphenol A extrapolated from pharmacokinetics established in in vivo experiments with chimeric mice with humanized liver and semi-physiological pharmacokinetic modeling. Regul. Toxicol. Pharmacol. 72, 71-76. https://doi.org/10.1016/j.yrtph.2015.03.010
  24. Noh, K., Oh do, G., Nepal, M. R., Jeong, K. S., Choi, Y., Kang, M. J., Kang, W., Jeong, H. G. and Jeong, T. C. (2016) Pharmacokinetic interaction of chrysin with caffeine in rats. Biomol. Ther. (Seoul) 24, 446-452. https://doi.org/10.4062/biomolther.2015.197
  25. Park, J. H., Hwang, M. S., Ko, A., Jeong, D. H., Lee, J. M., Moon, G., Lee, K. S., Kho, Y. H., Shin, M. K., Lee, H. S., Kang, H. S., Suh, J. H. and Hwang, I. G. (2016) Risk assessment based on urinary bisphenol A levels in the general Korean population. Environ. Res. 150, 606-615. https://doi.org/10.1016/j.envres.2016.03.024
  26. ROnn, M., Kullberg, J., Karlsson, H., Berglund, J., Malmberg, F., Orberg, J., Lind, L., AhlstrOm, H. and Lind, P. M. (2013) Bisphenol A exposure increases liver fat in juvenile fructose-fed Fischer 344 rats. Toxicology 303, 125-132. https://doi.org/10.1016/j.tox.2012.09.013
  27. Rebuli, M. E., Camacho, L., Adonay, M. E., Reif, D. M., Aylor, D. L. and Patisaul, H. B. (2015) Impact of low-dose oral exposure to bisphenol A (BPA) on juvenile and adult rat exploratory and anxiety behavior: A CLARITY-BPA consortium study. Toxicol. Sci. 148, 341-354. https://doi.org/10.1093/toxsci/kfv163
  28. Rebuli, M. E., Cao, J., Sluzas, E., Delclos, K. B., Camacho, L., Lewis, S. M., Vanlandingham, M. M. and Patisaul, H. B. (2014) Investigation of the effects of subchronic low dose oral exposure to bisphenol A (BPA) and ethinyl estradiol (EE) on estrogen receptor expression in the juvenile and adult female rat hypothalamus. Toxicol. Sci. 140, 190-203. https://doi.org/10.1093/toxsci/kfu074
  29. Sui, Y., Ai, N., Park, S. H., Rios-Pilier, J., Perkins, J. T., Welsh, W. J. and Zhou, C. (2012) Bisphenol A and its analogues activate human pregnane X receptor. Environ. Health Perspect. 120, 399-405. https://doi.org/10.1289/ehp.1104426
  30. Swedenborg, E., Ruegg, J., Makela, S. and Pongratz, I. (2009) Endo crine disruptive chemicals: mechanisms of action and involvement in metabolic disorders. J. Mol. Endocrinol. 43, 1-10. https://doi.org/10.1677/JME-08-0132
  31. Tsutsui, T., Tamura, Y., Yagi, E., Hasegawa, K., Takahashi, M., Maizumi, N., Yamaguchi, F. and Barrett, J. C. (1998) Bisphenol-A induces cellular transformation, aneuploidy and DNA adduct formation in cultured Syrian hamster embryo cells. Int. J. Cancer 75, 290-294. https://doi.org/10.1002/(SICI)1097-0215(19980119)75:2<290::AID-IJC19>3.0.CO;2-H
  32. Vandenberg, L. N., Chahoud, I., Heindel, J. J., Padmanabhan, V., Paumgartten, F. J. and Schoenfelder, G. (2010) Urinary, circulating, and tissue biomonitoring studies indicate widespread exposure to bisphenol A. Environ. Health Perspect. 118, 1055-1070. https://doi.org/10.1289/ehp.0901716
  33. Vandenberg, L. N., Ehrlich, S., Belcher, S. M., Ben-Jonathan, N., Dolinoy, D. C., Hugo, E. R., Hunt, P. A., Newbold, R. R., Rubin, B. S. and Saili, K. S. (2013) Low dose effects of bisphenol A: An integrated review of in vitro, laboratory animal, and epidemiology studies. Endocr. Disrupt. 1, e26490. https://doi.org/10.4161/endo.26490
  34. Vogel, S. A. (2009) The politics of plastics: the making and unmaking of bisphenol a "safety". Am. J. Public Health 99 Suppl 3, S559-S566. https://doi.org/10.2105/AJPH.2008.159228
  35. vom Saal, F. S., Akingbemi, B. T., Belcher, S. M., Birnbaum, L. S., Crain, D. A., Eriksen, M., Farabollini, F., Guillette, L. J., Hauser, R., Heindel, J. J., Ho, S. M., Hunt, P. A., Iguchi, T., Jobling, S., Kanno, J., Keri, R. A., Knudsen, K. E., Laufer, H., LeBlanc, G. A., Marcus, M., McLachlan, J. A., Myers, J. P., Nadal, A., Newbold, R. R., Olea, N., Prins, G. S., Richter, C. A., Rubin, B. S., Sonnenschein, C., Soto, A. M., Talsness, C. E., Vandenbergh, J. G., Vandenberg, L. N., Walser-Kuntz, D. R., Watson, C. S., Welshons, W. V., Wetherill, Y. and Zoeller, R. T. (2007) Chapel Hill bisphenol A expert panel consensus statement: Integration of mechanisms, effects in animals and potential to impact human health at current levels of exposure. Reprod. Toxicol. 24, 131-138. https://doi.org/10.1016/j.reprotox.2007.07.005
  36. Weinhouse, C., Anderson, O. S., Bergin, I. L., Vandenbergh, D. J., Gyekis, J. P., Dingman, M. A., Yang, J. and Dolinoy, D. C. (2014) Dose-dependent incidence of hepatic tumors in adult mice following perinatal exposure to bisphenol A. Environ. Health Perspect. 122, 485-491.
  37. Wilczewska, K., Namiesnik, J. and Wasik, A. (2016) Troubleshooting of the determination of bisphenol A at ultra-trace levels by liquid chromatography and tandem mass spectrometry. Anal. Bioanal. Chem. 408, 1009-1013. https://doi.org/10.1007/s00216-015-9215-z
  38. Xia, W., Jiang, Y., Li, Y., Wan, Y., Liu, J., Ma, Y., Mao, Z., Chang, H., Li, G., Xu, B., Chen, X. and Xu, S. (2014) Early-life exposure to bisphenol a induces liver injury in rats involvement of mitochondriamediated apoptosis. PLoS ONE 9, e90443. https://doi.org/10.1371/journal.pone.0090443
  39. Zoeller, R. T., Bansal, R. and Parris, C. (2005) Bisphenol-A, an environmental contaminant that acts as a thyroid hormone receptor antagonist in vitro, increases serum thyroxine, and alters RC3/neurogranin expression in the developing rat brain. Endocrinology 146, 607-612. https://doi.org/10.1210/en.2004-1018

Cited by

  1. Treatment with Phytoestrogens Reversed Triclosan and Bisphenol A-Induced Anti-Apoptosis in Breast Cancer Cells vol.26, pp.5, 2018, https://doi.org/10.4062/biomolther.2017.160
  2. Low Dose Exposure to Di-2-Ethylhexylphthalate in Juvenile Rats Alters the Expression of Genes Related with Thyroid Hormone Regulation vol.26, pp.5, 2018, https://doi.org/10.4062/biomolther.2018.076
  3. Fasiglifam (TAK-875), a G Protein-Coupled Receptor 40 (GPR40) Agonist, May Induce Hepatotoxicity through Reactive Oxygen Species Generation in a GPR40-Dependent Manner vol.26, pp.6, 2017, https://doi.org/10.4062/biomolther.2017.225
  4. Involvement of the Endocrine-Disrupting Chemical Bisphenol A (BPA) in Human Placentation vol.9, pp.2, 2020, https://doi.org/10.3390/jcm9020405
  5. Bisphenol A exposure disrupts aspartate transport in HepG2 cells vol.34, pp.8, 2017, https://doi.org/10.1002/jbt.22516
  6. Subchronic toxicity of bisphenol A on the architecture of spleen and hepatic trace metals and protein profile of adult male Wistar rats vol.39, pp.10, 2017, https://doi.org/10.1177/0960327120921440
  7. Hepatoprotective effects of oridonin against bisphenol A induced liver injury in rats via inhibiting the activity of xanthione oxidase vol.770, pp.None, 2021, https://doi.org/10.1016/j.scitotenv.2021.145301
  8. Gamma aminobutyric acid signaling disturbances and altered astrocytic morphology associated with Bisphenol A induced cognitive impairments in rat offspring vol.113, pp.12, 2017, https://doi.org/10.1002/bdr2.1886