DOI QR코드

DOI QR Code

A New Neolignan Derivative, Balanophonin Isolated from Firmiana simplex Delays the Progress of Neuronal Cell Death by Inhibiting Microglial Activation

  • Lim, Soo Young (College of Pharmacy, Gachon University) ;
  • Subedi, Lalita (College of Pharmacy, Gachon University) ;
  • Shin, Dongyun (College of Pharmacy, Gachon University) ;
  • Kim, Chung Sub (Natural Products Laboratory, School of Pharmacy, Sungkyunkwan University) ;
  • Lee, Kang Ro (Natural Products Laboratory, School of Pharmacy, Sungkyunkwan University) ;
  • Kim, Sun Yeou (College of Pharmacy, Gachon University)
  • Received : 2016.09.30
  • Accepted : 2017.02.20
  • Published : 2017.09.01

Abstract

Excessive activation of microglia causes the continuous production of neurotoxic mediators, which further causes neuron degeneration. Therefore, inhibition of microglial activation is a possible target for the treatment of neurodegenerative disorders. Balanophonin, a natural neolignoid from Firmiana simplex, has been reported to have anti-inflammatory and anti-cancer effects. In this study, we aimed to evaluate the anti-neuroinflammatory effects and mechanism of balanophonin in lipopolysaccharide (LPS)-stimulated BV2 microglia cells. BV2 microglia cells were stimulated with LPS in the presence or absence of balanophonin. The results indicated that balanophonin reduced not only the LPS-mediated TLR4 activation but also the production of inflammatory mediators, such as nitric oxide (NO), prostaglandin E2 (PGE2), $Interleukin-1{\beta}$ ($IL-1{\beta}$), and tumor necrosis $factor-{\alpha}$ ($TNF-{\alpha}$), in BV2 cells. Balanophonin also inhibited LPS-induced inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX2) protein expression and mitogen activated protein kinases (MAPKs), including extracellular signal-regulated kinase (ERK1/2), c-Jun N-terminal kinase (JNK), and p38 MAPK. Interestingly, it also inhibited neuronal cell death resulting from LPS-activated microglia by regulating cleaved caspase-3 and poly ADP ribose polymerase (PARP) cleavage in N2a cells. In conclusion, our data indicated that balanophonin may delay the progression of neuronal cell death by inhibiting microglial activation.

Keywords

References

  1. Block, M. L. and Hong, J. S. (2005) Microglia and inflammation-mediated neurodegeneration: multiple triggers with a common mechanism. Prog. Neurobiol. 76, 77-98. https://doi.org/10.1016/j.pneurobio.2005.06.004
  2. Burguillos, M. A., Deierborg, T., Kavanagh, E., Persson, A., Hajji, N., Garcia-Quintanilla, A., Cano, J., Brundin, P., Englund, E., Venero, J. L. and Joseph, B. (2011) Caspase signalling controls microglia activation and neurotoxicity. Nature 472, 319-324. https://doi.org/10.1038/nature09788
  3. Campbell, A. (2004) Inflammation, neurodegenerative diseases, and environmental exposures. Ann. N. Y. Acad. Sci. 1035, 117-132. https://doi.org/10.1196/annals.1332.008
  4. Cao, J., Semenova, M. M., Solovyan, V. T., Han, J., Coffey, E. T. and Courtney, M. J. (2004) Distinct requirements for $p38{\alpha}$ and c-Jun Nterminal kinase stress-activated protein kinases in different forms of apoptotic neuronal death. J. Biol. Chem. 279, 35903-35913. https://doi.org/10.1074/jbc.M402353200
  5. da Fonseca, A. C., Matias, D., Garcia, C., Amaral, R., Geraldo, L. H., Freitas, C. and Lima, F. R. (2014) The impact of microglial activation on blood-brain barrier in brain diseases. Front. Cell. Neurosci. 8, 362.
  6. Ha, S. K., Lee, P., Park, J. A., Oh, H. R., Lee, S. Y., Park, J. H., Lee, E. H., Ryu, J. H., Lee, K. R. and Kim, S. Y. (2008) Apigenin inhibits the production of NO and PGE2 in microglia and inhibits neuronal cell death in a middle cerebral artery occlusion-induced focal ischemia mice model. Neurochem. Int. 52, 878-886. https://doi.org/10.1016/j.neuint.2007.10.005
  7. Ha, S. K., Moon, E., Ju, M. S., Kim, D. H., Ryu, J. H., Oh, M. S. and Kim, S. Y. (2012) 6-Shogaol, a ginger product, modulates neuroinflammation: a new approach to neuroprotection. Neuropharmacology 63, 211-223. https://doi.org/10.1016/j.neuropharm.2012.03.016
  8. Hanada, T. and Yoshimura, A. (2002) Regulation of cytokine signaling and inflammation. Cytokine Growth Factor Rev. 13, 413-421. https://doi.org/10.1016/S1359-6101(02)00026-6
  9. Kaminska, B. (2005) MAPK signalling pathways as molecular targets for anti-inflammatory therapy--from molecular mechanisms to therapeutic benefits. Biochim. Biophys. 1754, 253-262. https://doi.org/10.1016/j.bbapap.2005.08.017
  10. Kim, J. W., Yang, H., Cho, N., Kim, B., Kim, Y. C. and Sung, S. H. (2015) Hepatoprotective constituents of Firmiana simplex stem bark against ethanol insult to primary rat hepatocytes. Pharmacogn. Mag. 11, 55-60. https://doi.org/10.4103/0973-1296.149704
  11. Kim, S. H., Smith, C. J. and Van Eldik, L. J. (2004) Importance of MAPK pathways for microglial pro-inflammatory cytokine IL-$1{\beta}$ production. Neurobiol. Aging 25, 431-439. https://doi.org/10.1016/S0197-4580(03)00126-X
  12. Kim, Y. S. and Joh, T. H. (2006) Microglia, major player in the brain inflammation: their roles in the pathogenesis of Parkinson's disease. Exp. Mol. Med. 38, 333-347. https://doi.org/10.1038/emm.2006.40
  13. Klegeris, A. and McGeer, P. L. (2005) Non-steroidal anti-inflammatory drugs (NSAIDs) and other anti-inflammatory agents in the treatment of neurodegenerative disease. Curr. Alzheimer Res. 2, 355-365. https://doi.org/10.2174/1567205054367883
  14. Kreutzberg, G. W. (1996) Microglia: a sensor for pathological events in the CNS. Trends Neurosci. 19, 312-318. https://doi.org/10.1016/0166-2236(96)10049-7
  15. Lee, H., Kim, Y. O., Kim, H., Kim, S. Y., Noh, H. S., Kang, S. S., Cho, G. J., Choi, W. S. and Suk, K. (2003) Flavonoid wogonin from medicinal herb is neuroprotective by inhibiting inflammatory activation of microglia. FASEB J. 17, 1943-1944. https://doi.org/10.1096/fj.03-0057fje
  16. Lee, H. S., Jung, K. K., Cho, J. Y., Rhee, M. H., Hong, S., Kwon, M., Kim, S. H. and Kang, S. Y. (2007) Neuroprotective effect of curcumin is mainly mediated by blockade of microglial cell activation. Pharmazie 62, 937-942.
  17. Li, Z., Tang, X., Chen, Y., Wei, L. and Wang, Y. (2009) Activation of firmiana simplex leaf and the enhanced Pb(II) adsorption performance:equilibrium and kinetic studies. J. Hazard. Mater. 169, 386-394. https://doi.org/10.1016/j.jhazmat.2009.03.108
  18. Liu, B. and Hong, J. S. (2003) Role of microglia in inflammation-mediated neurodegenerative diseases: mechanisms and strategies for therapeutic intervention. J. Pharmacol. Exp. Ther. 304, 1-7. https://doi.org/10.1124/jpet.102.035048
  19. Liu, Y., Qin, L., Li, G., Zhang, W., An, L., Liu, B. and Hong, J. S. (2003) Dextromethorphan protects dopaminergic neurons against inflammation-mediated degeneration through inhibition of microglial activation. J. Pharmacol. Exp. Ther. 305, 212-218. https://doi.org/10.1124/jpet.102.043166
  20. Lynch, M. A. (2009) The multifaceted profile of activated microglia. Mol. Neurobiol. 40, 139-156. https://doi.org/10.1007/s12035-009-8077-9
  21. McGeer, P. L. and McGeer, E. G. (1995) The inflammatory response system of brain: implications for therapy of Alzheimer and other neurodegenerative diseases. Brain Res. Brain Res. Rev. 21, 195-218. https://doi.org/10.1016/0165-0173(95)00011-9
  22. McGeer, P. L. and McGeer, E. G. (1999) Inflammation of the brain in Alzheimer's disease: implications for therapy. J. Leukoc. Biol. 65, 409-415. https://doi.org/10.1002/jlb.65.4.409
  23. McGeer, P. L. and McGeer, E. G. (2004) Inflammation and neurodegeneration in Parkinson's disease. Parkinsonism Relat. Disord. 10, S3-S7. https://doi.org/10.1016/j.parkreldis.2004.01.005
  24. Minghetti, L. and Levi, G. (1998) Microglia as effector cells in brain damage and repair: focus on prostanoids and nitric oxide. Prog. Neurobiol. 54, 99-125. https://doi.org/10.1016/S0301-0082(97)00052-X
  25. Minghetti, L. (2004) Cyclooxygenase-2 (COX-2) in inflammatory and degenerative brain diseases. J. Neuropathol. Exp. Neurol. 63, 901-910. https://doi.org/10.1093/jnen/63.9.901
  26. Murphy, S. (2000) Production of nitric oxide by glial cells: regulation and potential roles in the CNS. Glia 29, 1-13. https://doi.org/10.1002/(SICI)1098-1136(20000101)29:1<1::AID-GLIA1>3.0.CO;2-N
  27. Rankine, E. L., Hughes, P. M., Botham, M. S., Perry, V. H. and Felton, L. M. (2006) Brain cytokine synthesis induced by an intraparenchymal injection of LPS is reduced in MCP-1-deficient mice prior to leucocyte recruitment. Eur. J. Neurosci. 24, 77-86. https://doi.org/10.1111/j.1460-9568.2006.04891.x
  28. Robitaille, K., Daviau, A., Lachance, G., Couture, J. P. and Blouin, R. (2008) Calphostin C-induced apoptosis is mediated by a tissue transglutaminase-dependent mechanism involving the DLK/JNK signaling pathway. Cell Death Differ. 15, 1522-1531. https://doi.org/10.1038/cdd.2008.77
  29. Sairanen, T., Szepesi, R., Karjalainen-Lindsberg, M. L., Saksi, J., Paetau, A. and Lindsberg, P. J. (2009) Neuronal caspase-3 and PARP-1 correlate differentially with apoptosis and necrosis in ischemic human stroke. Acta Neuropathol. 118, 541-552. https://doi.org/10.1007/s00401-009-0559-3
  30. Sanchez-Pernaute, R., Ferree, A., Cooper, O., Yu, M., Brownell, A. L. and Isacson, O. (2004) Selective COX-2 inhibition prevents progressive dopamine neuron degeneration in a rat model of Parkin-son's disease. J. Neuroinflammation 1, 6. https://doi.org/10.1186/1742-2094-1-6
  31. Son, Y. K., Lee, M. H. and Han, Y. N. (2005) A new antipsychotic effective neolignan from firmiana simplex. Arch. Pharm. Res. 28, 34-38. https://doi.org/10.1007/BF02975132
  32. St-Onge, M., Flamand, N., Biarc, J., Picard, S., Bouchard, L., Dussault, A. A., Laflamme, C., James, M. J., Caughey, G. E., Cleland, L. G., Borgeat, P. and Pouliot, M. (2007) Characterization of prostaglandin E2 generation through the cyclooxygenase (COX)-2 pathway in human neutrophils. Biochim. Biophys. Acta 1771, 1235-1245. https://doi.org/10.1016/j.bbalip.2007.06.002
  33. Tang, Q., Tang, X., Hu, M., Li, Z., Chen, Y. and Lou, P. (2010) Removal of Cd(II) from aqueous solution with activated Firmiana Simplex Leaf: behaviors and affecting factors. J. Hazard. Mater. 179, 95-103. https://doi.org/10.1016/j.jhazmat.2010.02.062
  34. Tripathi, S., Maier, K. G., Bruch, D. and Kittur, D. S. (2007) Effect of 6-gingerol on pro-inflammatory cytokine production and costimulatory molecule expression in murine peritoneal macrophages. J. Surg. Res. 138, 209-213. https://doi.org/10.1016/j.jss.2006.07.051
  35. Tu, Y. F., Tsai, Y. S., Wang, L. W., Wu, H. C., Huang, C. C. and Ho, C. J. (2011) Overweight worsens apoptosis, neuroinflammation and blood-brain barrier damage after hypoxic ischemia in neonatal brain through JNK hyperactivation. J. Neuroinflammation 8, 40. https://doi.org/10.1186/1742-2094-8-40
  36. Waetzig, V., Czeloth, K., Hidding, U., Mielke, K., Kanzow, M., Brecht, S., Goetz, M., Lucius, R., Herdegen,T. and Hanisch, U. R. (2005) c-Jun N-terminal kinases (JNKs) mediate pro-inflammatory actions of microglia. Glia 50, 235-246. https://doi.org/10.1002/glia.20173
  37. Woo, K. W., Choi, S. U., Kim, K. H. and Lee, K. R. (2015) Ursane saponins from the stems of Firmiana simplex and their cytotoxic activity. J. Braz. Chem. Soc. 26, 1450-1456.
  38. Woo, K. W., Suh, W. S., Subedi, L., Kim, S. Y., Kim, A. and Lee, K. R. (2016) Bioactive lignan derivatives from the stems of Firmiana simplex. Bioorg. Med. Chem. Lett. 26, 730-733. https://doi.org/10.1016/j.bmcl.2016.01.008
  39. Xie, Z., Smith, C. J. and Van Eldik, L. J. (2004) Activated glia induce neuron death via MAP kinase signaling pathways involving JNK and p38. Glia 45, 170-179. https://doi.org/10.1002/glia.10314
  40. Yang, S., Zhang, D., Yang, Z., Hu, X., Qian, S., Liu, J., Wilson, B., Block, M. and Hong, J. S. (2008) Curcumin protects dopaminergic neuron against LPS induced neurotoxicity in primary rat neuron/glia culture. Neurochem. Res. 33, 2044-2053. https://doi.org/10.1007/s11064-008-9675-z
  41. Zhang, L.-X., Hu, Q.-H. and Wang, C.-B. (2013) Emergency evaluation of environmental sustainability of poultry farming that produces products with organic claims on the outskirts of mega-cities in China. Ecol. Eng. 54, 128-135. https://doi.org/10.1016/j.ecoleng.2013.01.030

Cited by

  1. Raging the War Against Inflammation With Natural Products vol.9, pp.1663-9812, 2018, https://doi.org/10.3389/fphar.2018.00976
  2. Natural Inhibitors on Over-Activation of Microglia from Herbals vol.67, pp.7, 2017, https://doi.org/10.1248/cpb.c18-00926
  3. Natural Inhibitors on Over-Activation of Microglia from Herbals vol.67, pp.7, 2017, https://doi.org/10.1248/cpb.c18-00926
  4. Sulforaphane-Enriched Broccoli Sprouts Pretreated by Pulsed Electric Fields Reduces Neuroinflammation and Ameliorates Scopolamine-Induced Amnesia in Mouse Brain through Its Antioxidant Ability via Nrf vol.2019, pp.None, 2017, https://doi.org/10.1155/2019/3549274
  5. Anti-Inflammatory Effect of Sulforaphane on LPS-Activated Microglia Potentially through JNK/AP-1/NF-κB Inhibition and Nrf2/HO-1 Activation vol.8, pp.2, 2017, https://doi.org/10.3390/cells8020194
  6. Probiotic mixture of Lactobacillus helveticus R0052 and Bifidobacterium longum R0175 attenuates hippocampal apoptosis induced by lipopolysaccharide in rats vol.22, pp.3, 2017, https://doi.org/10.1007/s10123-018-00051-3
  7. Mesenchymal stem cells inhibited the inflammation and oxidative stress in LPS-activated microglial cells through AMPK pathway vol.126, pp.12, 2017, https://doi.org/10.1007/s00702-019-02102-z
  8. Identification of Soluble Epoxide Hydrolase Inhibitors from the Seeds of Passiflora edulis Cultivated in Vietnam vol.25, pp.4, 2017, https://doi.org/10.20307/nps.2019.25.4.348
  9. Nitric Oxide as a Target for Phytochemicals in Anti-Neuroinflammatory Prevention Therapy vol.22, pp.9, 2017, https://doi.org/10.3390/ijms22094771
  10. Bioactivity-guided isolation of cyclooxygenase-2 inhibitors from Saussurea obvallata (DC.) Edgew. Using affinity solid phase extraction assay vol.284, pp.None, 2022, https://doi.org/10.1016/j.jep.2021.114785