References
- Arora, R., Sharma, M., Monif, T. and Iyer, S. (2016) A multi-centric bioequivalence trial in Ph+ chronic myeloid leukemia patients to assess bioequivalence and safety evaluation of generic imatinib mesylate 400mg tablets. Cancer Res. Treat. 48, 1120-1129. https://doi.org/10.4143/crt.2015.436
- Barthe, C., Cony-Makhoul, P., Melo, J. V. and Mahon, J. R. (2001) Roots of clinical resistance to STI-571 cancer therapy. Science 293, 2163. https://doi.org/10.1126/science.293.5538.2163a
- Bellodi, C., Lidonnici, M. R., Hamilton, A., Helgason, G. V., Soliera, A. R., Ronchetti, M., Galavotti, S., Young, K. W., Selmi, T., Yacobi, R., Van Etten, R. A., Donato, N., Hunter, A., Dinsdale, D., Tirro, E., Vigneri, P., Nicotera, P., Dyer, M. J., Holyoake, T., Salomoni, P. and Calabretta, B. (2009) Targeting autophagy potentiates tyrosine kinase inhibitor-induced cell death in Philadelphia chromosomepositive cells, including primary CML stem cells. J. Clin. Invest. 119, 1109-1123. https://doi.org/10.1172/JCI35660
- Boultwood, J. and Wainscoat, J. S. (2007) Gene silencing by DNA methylation in haematological malignancies. Br. J. Haematol. 138, 3-11. https://doi.org/10.1111/j.1365-2141.2007.06604.x
- Hughes, T. P., Saglio, G., Quintas-Cardama, A., Mauro, M. J., Kim, D. W., Lipton, J. H., Bradley-Garelik, M. B., Ukropec, J. and Hochhaus, A. (2015) BCR-ABL1 mutation development during first-line treatment with dasatinib or imatinib for chronic myeloid leukemia in chronic phase. Leukemia 29, 1832-1838. https://doi.org/10.1038/leu.2015.168
- Jabbour, E. and Kantarjian, H. (2014) Chronic myeloid leukemia: 2014 update on diagnosis, monitoring, and management. Am. J. Hematol. 89, 547-556. https://doi.org/10.1002/ajh.23691
-
Ji, P., Diederichs, S., Wang, W., Boing, S., Metzger, R., Schneider, P. M., Tidow, N., Brandt, B., Buerger, H., Bulk, E., Thomas, M., Berdel, W. E., Serve, H. and Muller-Tidow, C. (2003) MALAT-1, a novel noncoding RNA, and thymosin
${\beta}4$ predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene 22, 8031-8041. https://doi.org/10.1038/sj.onc.1206928 - Jurkovicova, D., Lukackova, R., Magyerkova, M., Kulcsar, L., Krivjanska, M., Krivjansky, V. and Chovanec, M. (2015) microRNA expression profiling as supportive diagnostic and therapy prediction tool in chronic myeloid leukemia. Neoplasma 62, 949-958. https://doi.org/10.4149/neo_2015_115
- Kang, Y., Hodges, A., Ong, E., Roberts, W., Piermarocchi, C. and Paternostro, G. (2014) Identification of drug combinations containing imatinib for treatment of BCR-ABL+ leukemias. PLoS ONE 9, e102221. https://doi.org/10.1371/journal.pone.0102221
- Lalevee, S. and Feil, R. (2015) Long noncoding RNAs in human disease:emerging mechanisms and therapeutic strategies. Epigenomics 7, 877-879. https://doi.org/10.2217/epi.15.55
- Liu, J., Wan, L., Lu, K., Sun, M., Pan, X., Zhang, P., Lu, B., Liu, G. and Wang, Z. (2015) The long noncoding RNA MEG3 contributes to cisplatin resistance of human lung adenocarcinoma. PLoS ONE 10, e0114586. https://doi.org/10.1371/journal.pone.0114586
-
Liu, Y., Li, Y., Li, N., Teng, W., Wang, M., Zhang, Y. and Xiao, Z. (2016) TGF-
${\beta}1$ promotes scar fibroblasts proliferation and transdifferentiation via up-regulating MicroRNA-21. Sci. Rep. 6, 32231. https://doi.org/10.1038/srep32231 - Mei, M., Ren, Y., Zhou, X., Yuan, X. B., Han, L., Wang, G. X., Jia, Z., Pu, P. Y., Kang, C. S. and Yao, Z. (2010) Downregulation of miR-21 enhances chemotherapeutic effect of taxol in breast carcinoma cells. Technol. Cancer Res. Treat. 9, 77-86. https://doi.org/10.1177/153303461000900109
- Miyoshi, N., Wagatsuma, H., Wakana, S., Shiroishi, T., Nomura, M., Aisaka, K., Kohda, T., Surani, M. A., Kaneko-Ishino, T. and Ishino, F. (2000) Identification of an imprinted gene, Meg3/Gtl2 and its human homologue MEG3, first mapped on mouse distal chromosome 12 and human chromosome 14q. Genes Cells 5, 211-220. https://doi.org/10.1046/j.1365-2443.2000.00320.x
- Salizzato, V., Borgo, C., Cesaro, L., Pinna, L. A. and Donella-Deana, A. (2016) Inhibition of protein kinase CK2 by CX-5011 counteracts imatinib-resistance preventing rpS6 phosphorylation in chronic myeloid leukaemia cells: new combined therapeutic strategies. Oncotarget 7, 18204-18218. https://doi.org/10.18632/oncotarget.7569
- Salmena, L., Poliseno, L., Tay, Y., Kats, L. and Pandolfi, P. P. (2011) A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell 146, 353-358. https://doi.org/10.1016/j.cell.2011.07.014
- Schindler, T., Bornmann, W., Pellicena, P., Miller, W. T., Clarkson, B. and Kuriyan, J. (2000) Structural mechanism for STI-571 inhibition of abelson tyrosine kinase. Science 289, 1938-1942. https://doi.org/10.1126/science.289.5486.1938
- Silveira, R. A., Fachel, A. A., Moreira, Y. B., De Souza, C. A., Costa, F. F., Verjovski-Almeida, S. and Pagnano, K. B. (2014) Protein-coding genes and long noncoding RNAs are differentially expressed in dasatinib-treated chronic myeloid leukemia patients with resistance to imatinib. Hematology 19, 31-41. https://doi.org/10.1179/1607845413Y.0000000094
- Taft, R. J., Pang, K. C., Mercer, T. R., Dinger, M. and Mattick, J. S. (2010) Non-coding RNAs: regulators of disease. J. Pathol. 220, 126-139. https://doi.org/10.1002/path.2638
- Takahashi, N. and Miura, M. (2011) Therapeutic drug monitoring of imatinib for chronic myeloid leukemia patients in the chronic phase. Pharmacology 87, 241-248. https://doi.org/10.1159/000324900
- Tano, K., Mizuno, R., Okada, T., Rakwal, R., Shibato, J., Masuo, Y., Ijiri, K. and Akimitsu, N. (2010) MALAT-1 enhances cell motility of lung adenocarcinoma cells by influencing the expression of motility-related genes. FEBS Lett. 584, 4575-4580. https://doi.org/10.1016/j.febslet.2010.10.008
- Tauchi, T. and Ohyashiki, K. (2004) Molecular mechanisms of resistance of leukemia to imatinib mesylate. Leuk. Res. 28 Suppl 1, S39-S45. https://doi.org/10.1016/j.leukres.2003.10.007
- Wei, G., Rafiyath, S. and Liu, D. (2010) First-line treatment for chronic myeloid leukemia: dasatinib, nilotinib, or imatinib. J. Hematol. Oncol. 3, 47. https://doi.org/10.1186/1756-8722-3-47
- Xia, H. and Hui, K. M. (2014) Mechanism of cancer drug resistance and the involvement of noncoding RNAs. Curr. Med. Chem. 21, 3029-3041. https://doi.org/10.2174/0929867321666140414101939
- Xu, G., Zhang, Y., Wei, J., Jia, W., Ge, Z., Zhang, Z. and Liu, X. (2013) MicroRNA-21 promotes hepatocellular carcinoma HepG2 cell proliferation through repression of mitogen-activated protein kinasekinase 3. BMC cancer 13, 469. https://doi.org/10.1186/1471-2407-13-469
- Yang, Y., Li, H., Hou, S., Hu, B., Liu, J. and Wang, J. (2013) The noncoding RNA expression profile and the effect of lncRNA AK126698 on cisplatin resistance in non-small-cell lung cancer cell. PLoS ONE 8, e65309. https://doi.org/10.1371/journal.pone.0065309
- Zhang, X., Rice, K., Wang, Y., Chen, W., Zhong, Y., Nakayama, Y., Zhou, Y. and Klibanski, A. (2010) Maternally expressed gene 3 (MEG3) noncoding ribonucleic acid: isoform structure, expression, and functions. Endocrinology 151, 939-947. https://doi.org/10.1210/en.2009-0657
- Zhang, X., Zhou, Y., Mehta, K. R., Danila, D. C., Scolavino, S., Johnson, S. R. and Klibanski, A. (2003) A pituitary-derived MEG3 isoform functions as a growth suppressor in tumor cells. J. Clin. Endocrinol. Metab. 88, 5119-5126. https://doi.org/10.1210/jc.2003-030222
- Zhi, F., Dong, H., Jia, X., Guo, W., Lu, H., Yang, Y., Ju, H., Zhang, X. and Hu, Y. (2013) Functionalized graphene oxide mediated adriamycin delivery and miR-21 gene silencing to overcome tumor multidrug resistance in vitro. PLoS ONE 8, e60034. https://doi.org/10.1371/journal.pone.0060034
Cited by
- Disordered Regions of Mixed Lineage Leukemia 4 (MLL4) Protein Are Capable of RNA Binding vol.19, pp.11, 2018, https://doi.org/10.3390/ijms19113478
- Long non-coding RNAs in hematological malignancies: translating basic techniques into diagnostic and therapeutic strategies vol.11, pp.1, 2018, https://doi.org/10.1186/s13045-018-0673-6
- MicroRNA21 and the various types of myeloid leukemia vol.25, pp.7-8, 2018, https://doi.org/10.1038/s41417-018-0025-2
- LncRNA SPRY4-IT was concerned with the poor prognosis and contributed to the progression of thyroid cancer vol.25, pp.1-2, 2018, https://doi.org/10.1038/s41417-017-0003-0
- Interaction of long noncoding RNA MEG3 with miRNAs: A reciprocal regulation vol.120, pp.3, 2018, https://doi.org/10.1002/jcb.27604
- Long non-coding RNA MEG3 functions as a competing endogenous RNA to regulate ischemic neuronal death by targeting miR-21/PDCD4 signaling pathway vol.8, pp.12, 2017, https://doi.org/10.1038/s41419-017-0047-y
- MEG3/miR-21 axis affects cell mobility by suppressing epithelial-mesenchymal transition in gastric cancer vol.40, pp.1, 2017, https://doi.org/10.3892/or.2018.6424
- lncRNA MNX1-AS1 Promotes Glioblastoma Progression Through Inhibition of miR-4443 vol.27, pp.3, 2017, https://doi.org/10.3727/096504018x15228909735079
- LncRNA MEG3 functions as a ceRNA in regulating hepatic lipogenesis by competitively binding to miR-21 with LRP6 vol.94, pp.None, 2019, https://doi.org/10.1016/j.metabol.2019.01.018
- LncRNA FENDRRattenuates adriamycin resistance via suppressingMDR1 expression through sponging HuR and miR‐184 in chronic myelogenous leukaemia cells vol.593, pp.15, 2017, https://doi.org/10.1002/1873-3468.13480
- Maternally expressed gene 3 (MEG3): A tumor suppressor long non coding RNA vol.118, pp.None, 2017, https://doi.org/10.1016/j.biopha.2019.109129
- LncRNA MEG3 influences the proliferation and apoptosis of psoriasis epidermal cells by targeting miR-21/caspase-8 vol.20, pp.1, 2019, https://doi.org/10.1186/s12860-019-0229-9
- Silencing MEG3 protects PC12 cells from hypoxic injury by targeting miR-21 vol.48, pp.1, 2017, https://doi.org/10.1080/21691401.2020.1725533
- Basic knowledge on BCR-ABL1-positive extracellular vesicles vol.14, pp.6, 2017, https://doi.org/10.2217/bmm-2019-0510
- Long non-coding RNAs as a determinant of cancer drug resistance: Towards the overcoming of chemoresistance via modulation of lncRNAs vol.50, pp.None, 2017, https://doi.org/10.1016/j.drup.2020.100683
- LncRNA MEG3 contributes to drug resistance in acute myeloid leukemia by positively regulating ALG9 through sponging miR‐155 vol.42, pp.4, 2017, https://doi.org/10.1111/ijlh.13225
- MicroRNA-21-Enriched Exosomes as Epigenetic Regulators in Melanomagenesis and Melanoma Progression: The Impact of Western Lifestyle Factors vol.12, pp.8, 2017, https://doi.org/10.3390/cancers12082111
- Progress of long noncoding RNAs in anti-tumor resistance vol.216, pp.11, 2017, https://doi.org/10.1016/j.prp.2020.153215
- Reducing LncRNA-5657 expression inhibits the brain inflammatory reaction in septic rats vol.16, pp.7, 2017, https://doi.org/10.4103/1673-5374.301022
- lncRNA SNHG15 Promotes Ovarian Cancer Progression through Regulated CDK6 via Sponging miR-370-3p vol.2021, pp.None, 2017, https://doi.org/10.1155/2021/9394563
- The Tyrosine Kinase-Driven Networks of Novel Long Non-coding RNAs and Their Molecular Targets in Myeloproliferative Neoplasms vol.9, pp.None, 2017, https://doi.org/10.3389/fcell.2021.643043
- Current Views on the Interplay between Tyrosine Kinases and Phosphatases in Chronic Myeloid Leukemia vol.13, pp.10, 2017, https://doi.org/10.3390/cancers13102311
- Long non-coding RNA MEG3 as a candidate prognostic factor for induction therapy response and survival profile in childhood acute lymphoblastic leukemia patients vol.81, pp.3, 2017, https://doi.org/10.1080/00365513.2021.1881998
- Clinical significance of long noncoding RNA maternally expressed gene 3 in acute promyelocytic leukemia vol.43, pp.4, 2021, https://doi.org/10.1111/ijlh.13438