DOI QR코드

DOI QR Code

음원 데이터베이스의 효율적 확장을 지원하는 내용 기반 음원 검색 시스템

A Content-based Audio Retrieval System Supporting Efficient Expansion of Audio Database

  • 박지훈 (중앙대학교 대학원 컴퓨터공학과) ;
  • 강현철 (중앙대학교 컴퓨터공학부)
  • Park, Ji Hun (Department of of Computer Science and Engineering, Graduate School, Chung-Ang University) ;
  • Kang, Hyunchul (School of of Computer Science and Engineering, Chung-Ang University)
  • 투고 : 2017.08.14
  • 심사 : 2017.08.31
  • 발행 : 2017.08.31

초록

음원 서비스의 주요 기능 중 하나인 내용 기반 검색을 위해 음원의 지문을 채취하여 데이타베이스에 저장하고 색인하여 검색에 활용하는 기법이 널리 사용되고 있다. 그런데 지속적으로 추가되는 신규 음원의 지문이 기존의 데이타베이스에 계속 삽입되면 공간 효율 및 음원 검색 성능의 저하가 점차 초래되는 문제점이 있다. 따라서 시스템 운용 비용의 증가를 가져오는 주기적인 데이터 베이스 재구성 없이 효율적인 음원 데이타베이스의 확장을 지원하는 기법이 요구된다. 본 논문에서는 샤잠의 지문 채취 알고리즘을 기반으로 클러스터 컴퓨팅 환경에서 맵리듀스 및 NoSQL 데이타베이스를 사용하여 이러한 문제를 해결하는 내용 기반 음원 검색 시스템의 설계를 제시하고 실제 음원 데이터를 이용한 다양한 실험을 통해 그 성능을 평가한다.

For content-based audio retrieval which is one of main functions in audio service, the techniques for extracting fingerprints from the audio source, storing and indexing them in a database are widely used. However, if the fingerprints of new audio sources are continually inserted into the database, there is a problem that space efficiency as well as audio retrieval performance are gradually deteriorated. Therefore, there is a need for techniques to support efficient expansion of audio database without periodic reorganization of the database that would increase the system operation cost. In this paper, we design a content-based audio retrieval system that solves this problem by using MapReduce and NoSQL database in a cluster computing environment based on the Shazam's fingerprinting algorithm, and evaluate its performance through a detailed set of experiments using real world audio data.

키워드

참고문헌

  1. Market Overview, IFPI Digital Music Report 2015, Available: http://www.ifpi.org/downloads/Digital-Music-Report-2015.pdf.
  2. D. Turnbull, L. Barrington, and G. Lanckriet, "Five approaches to collecting tags for music," in Proceedings of the 19th International Conference on Music Information Retrieval, pp 225-230, 2008.
  3. S. Lee, M. Masoud, J. Balaji, S. Belkasim, R. Sunderraman, and S. Moon, "A Survey of Tag-based Information Retrieval," International Journal of Multimedia Information Retrieval, Vol. 6, pp. 99-113, 2017. https://doi.org/10.1007/s13735-016-0115-6
  4. N. Borjian, E. Kabir, S. Seyedin, and E. Masehian, "A Query-By-Example Music Retrieval System Using Feature and Decision Fusion," Multimedia Tools and Applications, 2017 [Online]. Available: https://link.springer.com/content/pdf/10.1007%2Fs11042-017-4524-1.pdf.
  5. M. Kaminskas and F. Ricci, "Contextual music information retrieval and recommendation: State of the art and challenges," Computer Science Review, Vol. 6, No. 2-3, pp. 89-119, 2012. https://doi.org/10.1016/j.cosrev.2012.04.002
  6. P. Cano, E. Batle, T. Kalker, and J. Haitsma, "A review of algorithms for audio fingerprinting," in Proceedings of IEEE Workshop on Multimedia Signal Processing, pp. 169-173, Dec. 2002.
  7. C. Yu, R. Wang, J. Xiao, and J. Sun, "High Performance Indexing for Massive Audio Fingerprint Data," IEEE Transactions on Consumer Electronics, Vol. 60, No. 4, pp.690-695, November 2014. https://doi.org/10.1109/TCE.2014.7027344
  8. J. Wenyu, Z. Yongwei, B. Xiaoming, and Y. Rongshan, "Cloud-based Audio Fingerprinting Service," in Proceedings of Asia Pacific Signal and Information Processing Association Annual Summit and Conference, pp. 1-6, 2012.
  9. J. Lee and H. Jung, "Content-based Music Searching System Using Hadoop," in Proceedings of the Third International Conference on Emerging Databases, pp. 311-316, 2011.
  10. A. Wang, "An Industrial Strength Audio Retrieval Algorithm" in Proceedings of the 4th International Conference on Music Information Retrieval, pp. 7-13, 2003.
  11. Shazam, https://www.shazam.com/.
  12. A. Wang, "The Shazam Music Recognition Service," Communications of the ACM, Vol. 49, No. 8, pp. 44-48, 2006. https://doi.org/10.1145/1145287.1145312
  13. J. Dean and S. Ghemawat, "MapReduce: Simplified Data Processing on Large Clusters," in Proceedings of the 6th Symposium on Operating Systems Design and Implementation, pp. 137-149, 2004.
  14. Apache Hadoop, https://hadoop.apache.org/.
  15. D. Pritchett, "BASE: An ACID Alternative," ACM Queue, pp. 48-55, May/June, 2008.
  16. R. Cattell, "Scalable SQL and NoSQL Data Stores," SIGMOD Record, Vol. 39, No. 4, pp. 12-27, December 2010. https://doi.org/10.1145/1978915.1978919
  17. F. Chang, J. Dean, S. Ghemawat, W. Hsieh, D. Wallach, M. Burrows, T. Chandra, A. Fikes, and R. Gruber, "Bigtable: A Distributed Storage System for Structured Data," in Proceedings of the 7th USENIX Symposium on Operating Systems Design and Implementation, pp. 205-218, 2006.
  18. G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall, W. Vogels, "Dynamo: Amazon's Highly Available Key-value Store," in Proceedings of ACM Symposium on Operating Systems Principles, pp. 205-220, 2007.
  19. Memcached, www.memcached.org
  20. NoSQL Database, http://www.nosql-database.org/.
  21. J. Haitsma and T. Kalker, "A Highly Robust Audio Fingerprinting System With an Efficient Search Strategy," Journal of New Music Research, Vol. 32, No. 2, pp. 211-221, 2003. https://doi.org/10.1076/jnmr.32.2.211.16746
  22. S. Baluja and M. Covell, "Waveprint: Efficient wavelet-based audio fingerprinting," Pattern Recognition, Vol. 41, pp. 3467-3480, 2008. https://doi.org/10.1016/j.patcog.2008.05.006
  23. S. Lee, D. Yook, and S. Chang, "An Efficient Audio Fingerprint Search Algorithm for Music Retrieval," IEEE Transactions on Consumer Electronics, Vol. 59, No. 3, pp. 652-656, Aug. 2013. https://doi.org/10.1109/TCE.2013.6626252
  24. MuseScore, https://musescore.org/.
  25. JFugue, http://www.jfugue.org/.
  26. J. Yoon and U. Song, "Study of Optimization through Performance Analysis of Parallel Distributed File System," Journal of Digital Contents Society, Vol. 17, No. 5, pp. 409-416, Oct. 2016. https://doi.org/10.9728/dcs.2016.17.5.409
  27. V. Nguyen, S. Nguyen, and K. Kim, "Design of a Platform for Collecting and Analyzing Agricultural Big Data," Journal of Digital Contents Society, Vol. 18, No. 1, pp. 149-158, Feb. 2017. https://doi.org/10.9728/dcs.2017.18.1.149