DOI QR코드

DOI QR Code

Optimum Design of Lock Snap-fit Using Design of Experiment

실험계획법을 이용한 이탈방지 스냅핏의 최적설계

  • Son, In-Seo (Graduate School of Mechanical Engineering, Yeungnam University) ;
  • Shin, Dong-Kil (School of Mechanical Engineering, Yeungnam University)
  • 손인서 (영남대학교 대학원 기계공학과) ;
  • 신동길 (영남대학교 기계공학부)
  • Received : 2017.07.26
  • Accepted : 2017.08.17
  • Published : 2017.08.31

Abstract

This study investigated the design of a snap fit, which is widely used for fastening plastic parts. We analyzed the assembly mechanism of a lock snapfit, measured the assembly force and separation force based on the design of experiments, and derived a regression equation through an analysis of variance. The response surface methodology was also used. Polybutylene terephthalate was used to fabricate specimens, and the assembly force and separation force were measured using a micro-tensile tester. The length, width, thickness, and interference were considered as factors. A second-order regression model was used to derive the regression equation. The assembly force decreased with increasing length and width, but it increased with increasing thickness and interference. The finite element method was used to analyze the assembly mechanics. The width decreased the assembly force by increasing the ductility. The influences of the factors for low assembly force and high release force were shown to be opposite to each other. It was necessary to design a structure that minimized the assembly force while maintaining an appropriate level of separation force.

본 연구는 플라스틱 부품의 체결에 널리 활용되고 있는 스냅핏의 설계에 관하여 연구하였다. 이탈방지 기능이 우수한 이탈방지 스냅핏은 형상과 체결 메카니즘이 복잡하여 기존의 이론식에 기반한 체결력과 이탈력을 해석적으로 구할 수가 없다. 따라서 본 연구에서는 이탈방지 스냅핏에 대하여 체결 메커니즘을 분석하고, 실험계획법에 기반하여 체결력 및 이탈력을 측정하고, 분산분석을 통하여 회귀식을 도출하였다. 실험계획은 중심합성계획을 사용하였다. Polybutylene terephthalate를 이용하여 시편을 제작하여 미소인장시험기를 이용하여 체결력과 이탈력을 측정하였다. 설계인자는 Length, Width, Thickness, Interference 등 4개를 선정하였으며, 2차 회귀모형을 이용하여 체결력과 이탈력에 대한 회귀식을 도출하였다. Length와 Width가 증가할수록 체결력은 낮아졌으며, Thickness와 Interference는 증가할수록 체결력이 증가하였다. 이탈력은 체결력과 반대의 결과를 나타내었다. 유한요소법을 이용하여 체결 역학에 대하여 분석하였다. Width는 체결단계에서 단면관성모멘트의 증가를 통한 보의 강성 증가 효과 보다는, 오히려 길이 증가에 따른 연성증대로 인하여 체결력을 감소시키는 것으로 나타났다. 낮은 체결력과 높은 이탈력을 위한 인자들의 영향도는 서로 상반되는 것으로 나타났다. 적정 수준의 이탈력을 유지하면서 체결력을 최소화하는 설계가 필요한 것으로 나타났다.

Keywords

References

  1. P. R. Bonenberger, The First Snap-Fit Handbook 2nd edition, Hanser Gardner Publications, 2006.
  2. G. Erhard, Designing with plastics, Hanser Gardner Publications, 2006. DOI: https://doi.org/10.3139/9783446412828
  3. S. N. Kang, Y. J. Huh, "A study on the Snap-fit Design System in Injection Molding", Journal of the Korea Academia-industrial cooperation Society, pp. 1-5, 2001.
  4. B. S. Park, M. S. Hong, "Intensity Analysis and Application of Integral Attachment in Snap-Fit" Transactions of the Korean Society of Machine Tool Engineers, pp. 44-49, 2006.
  5. D. A. Nichols, A. F. Luscher, "Numerical Modeling of a Post & Dome Snap-Fit Feature" Research in English Design, pp. 103-111, 2000.
  6. G. Suri, "A fundamental Investigation of Retention Phenomena in Snap-fit Features" The Ohio State University thesis for a degree, 2002.
  7. S. S. Lee, T. H. Kim, S. J. Hu, W. W. Cai, J. A. Abell, "Joining Technologies for Automotive Lithium-Ion Battery Manufacturing: A Review", Proc. of ASME 2010 International Manufacturing Science and Engineering Conference, October, 2010. DOI: https://doi.org/10.1115/MSEC2010-34168
  8. L. Amelia, D.A. Wahab, A. R. Ismail, C. H. C. Haron, "Disassembly time evaluation for enhancing the reusability of automotive components", IEEE International Conference on Industrial Engineering and Engineering Management, pp. 115-119, Dec. 2009. DOI: https://doi.org/10.1109/IEEM.2009.5373411
  9. B. Willems, W. Dewulf, J. R. Duflou, "Active snap-fit development using topology optimization", International Journal of Production Research, vol. 45, no. 18-19, pp. 4163-4187, 2007. DOI: https://doi.org/10.1080/00207540701440311
  10. M. K. Billal, B. V. Moorthy, D. Aquilina, S. Schenten, "CAE Applications and Techniques used in Calculating the Snaps Insertions and Retentions Efforts in Automotive Trims", SAE Int. J. Passeng. Cars - Mech. Syst, vol. 7, no. 2, pp. 829-837, 2014. https://doi.org/10.4271/2014-01-1032
  11. S. J. Ha, Y. K. Cho, M. W. Cho, K. C. Lee,, W. H. Choi, "Process Capability Optimization of a LED Die Bonding Using Response Surface Analysis", Journal of the Korea Academia-industrial cooperation Society, pp. 4378-4384, 2012. DOI: https://doi.org/10.5762/KAIS.2017.18.4.175
  12. D. K. Shin, H. C. Kim, J. J. Lee, "Numerical analysis of the damage behavior of an aluminum/CFRP hybrid beam under three point bending", Composites: Part B, 56, pp. 397-407, 2014. DOI: https://doi.org/10.1016/j.compositesb.2013.08.030