DOI QR코드

DOI QR Code

Relationship of Risk Factors and Incidence to Size, Number and Location of Unruptured Intracranial Aneurysm

비파열 동맥류의 크기, 개수, 위치에 따른 위험요인과 발생빈도의 상관관계

  • Choi, Pahn Kyu (Department of Neurology, Chosun University School of Medicine) ;
  • Kang, Hyun Goo (Department of Neurology, Chosun University School of Medicine)
  • 최판규 (조선대학교의과대학 신경과학 교실) ;
  • 강현구 (조선대학교의과대학 신경과학 교실)
  • Received : 2017.05.08
  • Accepted : 2017.08.17
  • Published : 2017.08.31

Abstract

The increased investigation of the cerebral arteries with magnetic resonance angiography has resulted in an increase in the identification of unruptured intracranial aneurysms (UIAs). Knowledge of the distribution and factors associated with UIAs might be helpful for understanding the pathological mechanism of unruptured aneurysms. This study examined patients who visited a health care center and had a health examination from January 2007 to December 2016. Subjects who underwent magnetic resonance angiography with a health examination at the Health Screening were enrolled in this study. The incidence and risk factors of UIAs (age, sex, hypertension, diabetes mellitus, smoking, alcohol, and coronary artery disease) were investigated by comparing the size (more than 3 mm vs. less than 3 mm) and multiple aneurysm (single vs. multiple aneurysms). The frequency of aneurysm according to the site was also analyzed. Among the 187166 subjects, who received a health examination, 18954 underwent magnetic resonance angiography. Of them, 367 (1.93%) had UIAs. A comparison of the size of more than 3 mm and less than 3 mm showed that the mean age of the more than 3 mm group of patients was significantly higher than the other size groups (more than 3 mm $57.16{\pm}8.47$ vs. less than 3 mm $55.12{\pm}8.19$; p=0.07). High-density lipoprotein was significantly higher in the more than 3 mm group than in the less than 3 mm($55.95{\pm}16.03$ vs. less than 3 mm $50.85{\pm}13.65$; p=0.007). Hypertension was significantly higher in the multiple aneurysm group (single 153 in 399 (38.3%) VS multiple 19 in 35 (54.3%); p=0.065). An aneurysm of less than 3 mm in size was frequent in the distal internal carotid artery (34.3%) and MCA-bifurcation (16.4%) (p=0.003). Aneurysms of more than 3 mm were frequent in the distal internal carotid artery (43.4%) and MCA-bifurcation (13.4%), and anterior communicating artery (13.4%) (p=0.003). The difference in size and single or multiple aneurysm revealed other risk factors. These risk factors suggest that degenerative and hemodynamic disorders may lead to the presence of aneurysms.

자기공명혈관영상(magnetic resonance angiography: MRA)을 이용한 뇌혈관검사가 증가하면서 비파열 동맥류의 발견이 많아졌다. 비파열 동맥류(unruptured intracranial aneurysm: UIA)의 병태생리 이해를 위해 비파열 동맥류의 분포와 관련요인을 아는 것이 도움이 될 것으로 생각한다. 환자군은 건강검진 시 MRA를 시행받은 사람을 대상으로 하였다. 비파열 동맥류의 발생과 위험요인(나이, 성별, 고혈압, 당뇨, 흡연, 음주력, 관상동맥질환)을 크기(3 mm이상 대 3 mm미만)와 다발성 동맥류(단일 대 다발성 동맥류)에 따라 비교하였다. 그리고 위치에 따른 비파열 동맥류 발생 빈도를 비교하였다. 2007년 1월부터 2016년 12월까지 건강검진 센터를 방문하여 건강검진을 받은 사람을 대상으로 하였다. 건강검진을 받은 187166명의 사람 중 18954명이 MRA를 찍었으며, 이 중 367명(1.93%)이 비파열 동맥류를 보였다. 3 mm이상과 3 mm미만의 동맥류를 비교하였을 때 3 mm이상의 동맥류 환자군에서 평균 나이가 유의하게 높았다(3 mm이상 $57.16{\pm}8.47$ 대 3 mm미만 $55.12{\pm}8.19$; p=0.07). 고밀도 지질단백질(high-density lipoprotein)은 3 mm이상의 동맥류 환자군에서 유의하게 높았다(3 mm 이상 $55.95{\pm}16.03$ 대 3 mm미만 $50.85{\pm}13.65$; p=0.007). 고혈압은 다발성 동맥류 환자군에서 의미있게 높은 경향을 보였다(단일 동맥류 399명 중 153명(38.3%) 대 다발성 동맥류 35명 중 19명 (54.3%); p=0.065). 3mm미만의 동맥류는 내경동맥 말단부(34.3%)와 중대뇌동맥 분기부(16.4%)에서 호발하였다(p=0.003). 3 mm이상의 동맥류는 내경동맥 말단부(43.3%)와 중대뇌동맥 분기부(13.4%) 및 앞교통동맥(13.4%)에서 호발하였다(p=0.003). 동맥류는 크기 차이와 단일 혹은 다발성에 따라 서로 다른 위험요인과의 상관성을 보였으나, 두가지 위험요인 모두 혈관의 퇴행성 변화와 혈류역학적 장애가 동맥류 발생의 원인이 될 수 있다는 것을 보여준다.

Keywords

References

  1. Li J, Shen B, Ma C, Liu L, Ren L, Fang Y., 3D contrast enhancement-MR angiography for imaging of unruptured cerebral aneurysms: a hospital-based prevalence study. PLoS One. 9:e114157, 2014. DOI: https://doi.org/10.1371/journal.pone.0114157
  2. Vernooij MW, Ikram MA, Tanghe HL, Vincent AJ, Hofman A, Krestin GPl. Incidental findings on brain MRI in the general population. N Engl J Med. 357, pp. 1821-1828, 2007. https://doi.org/10.1056/NEJMoa070972
  3. Horikoshi T, Akiyama I, Yamagata Z, Nukui H. Retrospective analysis of the prevalence of asymptomatic cerebral aneurysm in 4518 patients undergoing magnetic resonance angiography-.when does cerebral aneurysm develop? Neurol Med Chir (Tokyo). 42, pp. 105-112, discussion 113, 2002. https://doi.org/10.2176/nmc.42.105
  4. Ross J. S., Masaryk T. J., Modic M. T., Ruggieri P. M., Haacke E. M., Selman W. R., Intracranial aneurysms: evaluation by MR angiography. AJNR Am J Neuroradiol. 11, pp. 449-455, 1990.
  5. Igase K, Matsubara I, Igase M, Miyazaki H, Sadamoto K. Initial experience in evaluating the prevalence of unruptured intracranial aneurysms detected on 3-tesla MRI. Cerebrovasc Dis. 33, pp. 348-353, 2012. https://doi.org/10.1159/000336015
  6. Park S., Lee D. H., Ryu C. W., Pyun H. W., Choi C. G., Kim S. J., et al., Incidental saccular aneurysms on head MR angiography: 5 years' experience at a single large-volume center. J Stroke. 16, pp. 189-94, 2014. DOI: https://doi.org/10.5853/jos.2014.16.3.189
  7. Foutrakis GN, Yonas H, Sclabassi RJ. Saccular aneurysm formation in curved and bifurcating arteries. AJNR Am J Neuroradiol 20, pp. 1309-317, 1999.
  8. Brisman JL, Song JK, Newell DW. Cerebral aneurysms. N Engl J Med. 355, pp. 928-39, 2006. DOI: https://doi.org/10.1056/NEJMra052760
  9. Paul A. James, Suzanne Oparil, Barry L. Carter, PWilliam, Cushman, Cheryl Dennison-Himmelfarb, RN, ANP, Joel Handler, Daniel T. Lackland, Michael L. LeFevre, Thomas D. MacKenzie, Olugbenga Ogedegbe, Sidney C. Smith Jr, Laura P. Svetkey, Sandra J. Taler, Raymond R. Townsend, Jackson T. Wright Jr, Andrew S. Narva, Eduardo Ortiz. 2014 Evidence-Based Guideline for the Management of High Blood Pressure in Adults Report From the Panel Members Appointed to the Eighth Joint National Committee (JNC 8). JAMA vol. 311, no. 5, pp. 507-520, 2014. DOI: https://doi.org/10.1001/jama.2013.284427
  10. George Bakris, Lawrence Blonde, Andrew J.M. Boulton, David D'Alessio, Mary de Groot, Eddie L. Greene, Frank B. Hu, Steven E. Kahn, Derek LeRoith, Robert G. Moses, Stephen Rich, Matthew C. Riddle, Julio Rosenstock, William V. Tamborlane, Katie Weinger, Judith Wylie-Rosett. Standards of Medical Care in Diabetes 2017. ADA Vol. 40, Supplement 1, Jan. 2017
  11. Chalouhi N, Ali MS, Jabbour PM, Tjoumakaris SI, Gonzalez LF, Rosenwasser RH, et al. Biology of intracranial aneurysms: role of inflammation. J Cereb Blood Flow Metab. 32, pp. 1659-676, 2012. DOI: https://doi.org/10.1038/jcbfm.2012.84
  12. Golledge J, Norman PE. Atherosclerosis and abdominal aortic aneurysm: cause, response, or common risk factors? Arterioscler Thromb Vasc Biol. 30, pp. 1075-077, 2010. DOI: https://doi.org/10.1161/ATVBAHA.110.206573
  13. Shin YW, Jung KH, Moon J, Lee ST, Lee SK, Chu K. Site-specific relationship between intracranial aneurysm and aortic aneurysm. Stroke. 46, pp. 1993-996, 2015. DOI: https://doi.org/10.1161/STROKEAHA.115.009254
  14. Gatchev O, Rastam L, Lindberg G, Gullberg B, Eklund GA, Isacsson SO. Subarachnoid hemorrhage, cerebral hemorrhage, and serum cholesterol concentration in men and women. Ann Epidemiol. 3, pp. 403-09, 1993. DOI: https://doi.org/10.1016/1047-2797(93)90068-F
  15. Takagi H, Manabe H, Kawai N, Goto SN, Umemoto T. Serum higy-density and low-density lipoprotein cholesterol is associated wity abdominal aortic aneurysm presence: a systeminc review and meta-analysis. Int Aniol, vol. 29, no. 4, pp. 371-375, 2010.
  16. Coutard M, Osborne-Pellegrin M. Genetic susceptibility to experimental cerebral aneurysm formation in the rat. Stroke. 28, pp. 1035-041, discussion 1042, 1997. https://doi.org/10.1161/01.STR.28.5.1035
  17. Kim C, Kikuchi H, Hashimoto N, Kojima M, Kang Y, Hazama F. Involvement of internal elastic lamina in development of induced cerebral aneurysms in rats. Stroke. 19, pp. 507-11, 1988. DOI: https://doi.org/10.1161/01.STR.19.4.507
  18. Kim JS, Bonovich D. Research on intracranial atherosclerosis from the east and west: why are the results different? J Stroke. 16, pp. 105-13, 2014. DOI: https://doi.org/10.5853/jos.2014.16.3.105
  19. White PM, Wardlaw JM, Easton V. Can noninvasive imaging accurately depict intracranial aneurysms? A systematic review. Radiology. 217, pp. 361-70, 2000. DOI: https://doi.org/10.1148/radiology.217.2.r00nv06361
  20. Chung TS, Joo JY, Lee SK, Chien D, Laub G. Evaluation of cerebral aneurysms with high-resolution MR angiography using a section-interpolation technique: correlation with digital subtraction angiography. AJNR Am J Neuroradiol. 20, pp. 229-35, 1999.
  21. Grandin CB, Mathurin P, Duprez T, Stroobandt G, Hammer F, Goffette P. Diagnosis of intracranial aneurysms: accuracy of MR angiography at 0.5 T. AJNR Am J Neuroradiol. 19, pp. 245-52, 1998.
  22. Okahara M, Kiyosue H, Yamashita M, Nagatomi H, Hata H, Saginoya T. Diagnostic accuracy of magnetic resonance angiography for cerebral aneurysms in correlation with 3D-digital subtraction angiographic images: a study of 133 aneurysms. Stroke. 33, pp. 1803-808, 2002. DOI: https://doi.org/10.1161/01.STR.0000019510.32145.A9
  23. White PM, Teasdale EM, Wardlaw JM, Easton V. Intracranial aneurysms: CT angiography and MR angiography for detection prospective blinded comparison in a large patient cohort. Radiology. 219, pp. 739-49, 2001. DOI: https://doi.org/10.1148/radiology.219.3.r01ma16739
  24. Gibbs GF, Huston J III, Bernstein MA, Riederer SJ, Brown RD Jr. Improved image quality of intracranial aneurysms: 3.0-T versus 1.5-T time-of-flight MR angiography. AJNR Am J Neuroradiol. 25, pp. 84-7, 2004.