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STABILITY OF C∗-TERNARY QUADRATIC 3-JORDAN
HOMOMORPHISMS

Choonkil Park a and Sungsik Yun b, ∗

Abstract. In this paper, we define C∗-ternary quadratic 3-Jordan homomorphisms
associated with the quadratic mapping f(x + y) + f(x − y) = 2f(x) + 2f(y), and
prove the Hyers-Ulam stability of C∗-ternary quadratic 3-Jordan homomorphisms.

1. Introduction and Preliminaries

As it is extensively discussed in [17], the full description of a physical system S

implies the knowledge of three basic ingredients: the set of the observables, the set
of the states and the dynamics that describes the time evolution of the system by
means of the time dependence of the expectation value of a given observable on a
given statue. Originally the set of the observables were considered to be a C∗-algebra
[9].

We say that a functional equation (Q) is stable if any function g satisfying the
equation (Q) approximately is near to true solution of (Q).

The stability problem of functional equations originated from a question of Ulam
[22] concerning the stability of group homomorphisms. Hyers [10] gave a first affir-
mative partial answer to the question of Ulam for Banach spaces. Hyers’ Theorem
was generalized by Aoki [2] for additive mappings and by Th.M. Rassias [16] for
linear mappings by considering an unbounded Cauchy difference.

The functional equation f(x + y) + f(x− y) = 2f(x) + 2f(y) is called quadratic
functional equation. In addition, every solution of the above equation is said to be a
quadratic mapping. Czerwik [5] proved the Cauchy-Rassias stability of the quadratic
functional equation. Since then, the stability problems of various functional equation
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have been extensively investigated by a number of authors (for instances, [3, 7, 18,
19, 20, 21]).

Ternary algebraic operations were considered in the 19th century by several math-
ematicians and physicists (see [12]). As an application in physics, the quark model
inspired a particular brand of ternary algebraic systems. The so-called Nambu
mechanics which has been proposed by Nambu [6] in 1973, is based on such struc-
tures. There are also some applications, although still hypothetical, in the fractional
quantum Hall effect, the non-standard statistics (the anyons), supersymmetric the-
ories, Yang-Baxter equation, etc ([1, 23]). The comments on physical applications
of ternary structures can be found in ([4, 8, 11, 13, 14, 15]).

A ternary algebra is a complex Banach space, equipped with a ternary product
(x, y, z) → [x, y, z] of A3 into A, which is C-linear in the outer variables, conjugate
C-linear in the middle variable, and associative in the sense that

[
x, y, [z, u, v]

]
=[

x, [y, z, u]v
]

=
[
[x, y, z], u, v

]
and satisfies ‖[x, y, z]‖ ≤ ‖x‖‖y‖‖z‖. A C∗-ternary

algebra is a complex Banach space A equipped with a ternary product which is
associative and C-linear in the outer variables, conjugate C-linear in the middle
variable, and ‖[x, x, x]‖ = ‖x‖3 (see [24]). If a C∗-ternary algebra (A, [. · .·, ·]) has
an identity, that is, an element e ∈ A such that x = [x, e, e] = [e, e, x] for all x ∈ A,
then it is routine to verify that A, endowed with xoy := [x, e, y], x∗ := [e, x, e], is a
unital C∗-algebra. Conversely, if (A, o) is a unital C∗-algebra, then [x, y, z] := xoy∗oz
makes A into a C∗-ternary algebra.

Throughout this paper, let A and B be Banach ternary algebras.
A quadratic mapping Q : A → B is called a C∗-ternary quadratic homomorphism

if

Q([x, x, x]) = [Q(x), Q(x), Q(x)]

for all x ∈ A.

Definition 1.1. Let A and B be C∗-ternary algebras. A quadratic mapping Q :
A → B is called a C∗-ternary quadratic 3-Jordan homomorphism if it satisfies

Q([[x, x, x], [y, y, y], [z, z, z]]) = [Q([x, x, x]), Q([y, y, y]), Q([z, z, z])]

for all x, y, z ∈ A.

In this paper, we prove the Hyers-Ulam stability of C∗-ternary quadratic 3-Jordan
homomorphisms in C∗-ternary algebras.
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2. Stability of C∗-ternary Quadratic 3-Jordan Homomorphisms

In this section, we prove the Hyers-Ulam stability of C∗-ternary quadratic 3-
Jordan homomorphisms for the quadratic functional equation

Q(x + y) + Q(x− y) = 2Q(x) + 2Q(y).

Theorem 2.1. Let f : A → B be a mapping for which there exists a function
ϕ : A3 → [0,∞) such that

∞∑

i=0

49iϕ
( x

2i
,

y

2i
,

z

2i

)
< ∞,

(2.1) ‖f(x + y) + f(x− y)− 2f(x)− 2f(y)‖ ≤ ϕ(x, y, 0)

∥∥∥f([[x, x, x], [y, y, y], [z, z, z]])− [f([x, x, x]), f([y, y, y]), f([z, z, z])]
∥∥∥ ≤ ϕ(x, y, z)

(2.2)

for all x, y, z ∈ A. Then there exists a unique C∗-ternary quadratic 3-Jordan homo-
morphism Q : A → B such that

(2.3) ‖f(x)−Q(x)‖ ≤ ϕ̃
(x

2
,
x

2
, 0

)

for all x ∈ A, where

ϕ̃(x, y, z) :=
∞∑

i=0

4iϕ
( x

2i
,

y

2i
,

z

2i

)

for all x, y, z ∈ A.

Proof. It follows from (2.1) that f(0) = 0.
Letting y = x in (2.1), we get

(2.4) ‖f(2x)− 4f(x)‖ ≤ ϕ(x, x, 0)

for all x ∈ A. So

‖f(x)− 4f
(x

2

)
‖ ≤ ϕ

(x

2
,
x

2
, 0

)

for all x ∈ A. Hence

∥∥∥4lf
( x

2l

)
− 4mf

( x

2m

)∥∥∥ ≤
m−1∑

i=1

∥∥∥4if
( x

2i

)
− 4i+1f

( x

2i+1

)∥∥∥ ≤
m−1∑

i=0

4iϕ
( x

2i+1
,

x

2i+1
, 0

)
(2.5)

≤
m−1∑

i=0

49iϕ
( x

2i+1
,

x

2i+1
, 0

)
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for all nonnegative integers m and l with m > l and all x ∈ A. It follows from (2.5)
that the sequence {4nf( x

2n )} is a Cauchy sequence for all x ∈ A. Since B is complete,
the sequence {4nf( x

2n )} converges. So one can define the mapping Q : A → B by

Q(x) = lim
n→∞ 4nf

( x

2n

)

for all x ∈ A. Moreover, letting l = 0 and passing the limit m →∞ in (2.5), we get
(2.3).

It follows from (2.1) that

‖Q(x + y) + Q(x− y)− 2Q(x)− 2Q(y)‖
= lim

n→∞ 4n
∥∥∥f

(x + y

2n

)
+ f

(x− y

2n

)
− 2f

( x

2n

)
− 2f

( y

2n

)∥∥∥

≤ lim
n→∞ 4nϕ

( x

2n
,

y

2n
, 0

)
≤ lim

n→∞ 49nϕ
( x

2n
,

y

2n
, 0

)
= 0

and so

Q(x + y) + Q(x− y) = 2Q(x) + 2Q(y)

for all x, y ∈ A.
It follows from (2.2) and the continuity of the ternary product that∥∥∥Q([[x, x, x], [y, y, y], [z, z, z]])− [Q([x, x, x]), Q([y, y, y]), Q([z, z, z])]

∥∥∥

= lim
n→∞ 49n

∥∥∥f
(
[[

x

2n
,

x

2n
,

x

2n
], [

y

2n
,

y

2n
,

y

2n
], [

z

2n
,

z

2n
,

z

2n
]]
)

− [f
(
[
x

2n
,

x

2n
,

x

2n
]
)
, f

(
[
y

2n
,

y

2n
,

y

2n
]
)
, f

(
[
z

2n
,

z

2n
,

z

2n
]
)
]
∥∥∥

≤ lim
n→∞ 49nϕ

( x

2n
,

y

2n
,

z

2n

)
= 0

and so

Q([[x, x, x], [y, y, y], [z, z, z]]) = [Q([x, x, x]), Q([y, y, y]), Q([z, z, z])]

for all x, y, z ∈ A.
Now, let T : A → B be another quadratic mapping satisfying (2.3). Then we

have

‖Q(x)− T (x)‖ = 4n
∥∥∥Q

( x

2n
)− T (

x

2n

)∥∥∥

≤ 4n
(∥∥∥Q

( x

2n

)
− f

( x

2n

)∥∥∥ +
∥∥∥T

( x

2n

)
− f

( x

2n

)∥∥∥
)

≤ 2 · 4nϕ
( x

2n
,

x

2n
, 0

)
,

which tends to zero as n →∞ for all x ∈ A. So we can conclude that Q(x) = T (x)
for all x ∈ A. This proves the uniqueness of Q. Thus the quadratic mapping
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Q : A → B is a unique C∗-ternary quadratic 3-Jordan homomorphism satisfying
(2.3). ¤

Corollary 2.2. Let r, θ be nonnegative real numbers with r > 18 and let f : A → B

be a mapping satisfying

(2.6) ‖f(x + y) + f(x− y)− 2f(x)− 2f(y)‖ ≤ θ(‖x‖r + ‖y‖r),
∥∥∥f([[x, x, x], [y, y, y], [z, z, z]])− [f([x, x, x]), f([y, y, y]), f([z, z, z])]

∥∥∥(2.7)

≤ θ(‖x‖r + ‖y‖r + ‖z‖r)

for all x, y, z ∈ A. Then there exists a unique C∗-ternary quadratic 3-Jordan homo-
morphism Q : A → B such that

‖f(x)−Q(x)‖ ≤ 2θ

2r − 4
‖x‖r

for all x ∈ A.

Proof. Defining ϕ(x, y, z) = θ(‖x‖r +‖y‖r +‖z‖r) in Theorem 2.1, we get the desired
result. ¤

Theorem 2.3. Let f : A → B be a mapping for which there exists a function
ϕ : A3 → [0,∞) satisfying (2.1) and (2.2) such that

ϕ̃(x, y, z) :=
∞∑

i=0

1
4i

ϕ(2ix, 2iy, 2iz) < ∞

for all x, y, z ∈ A. Then there exists a unique C∗-ternary quadratic 3-Jordan homo-
morphisms Q : A → B such that

(2.8) ‖f(x)−Q(x)‖ ≤ 1
4
ϕ̃(x, x, 0)

for all x ∈ A

Proof. It follows from (2.4) that
∥∥∥f(x)− 1

4
f(2x)

∥∥∥ ≤ 1
4
ϕ(x, x, 0)

for all x ∈ A

(2.9)
∥∥∥ 1
4l

f(2lx)− 1
4m

f(2mx)
∥∥∥ ≤

m−1∑

j=l

∥∥∥ 1
4j

f(2jx)− 1
4j+1

f(2j+1x)
∥∥∥ ≤

m−1∑

j=l

1
4j+1

ϕ(2jx, 2jx, 0)

for all nonnegative integers m and l with m > l and all x ∈ A. It follows from
(2.9) that the sequence {( 1

4n )f(2nx)} is a Cauchy sequence for all x ∈ A. Since B
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is complete, the sequence {( 1
4n )f(2nx)} converges. So one can define the mapping

Q : A → B by

Q(x) := lim
n→∞

1
4n

f(2nx)

for all x ∈ A. Moreover, letting l = 0 and passing the limit m →∞ in (2.9), we get
(2.8).

It follows from (2.2) and the continuity of the ternary product that
∥∥∥Q([[x, x, x], [y, y, y], [z, z, z]])− [Q([x, x, x]), Q([y, y, y]), Q([z, z, z])]

∥∥∥

= lim
n→∞

1
49n

∥∥∥f([[2nx, 2nx, 2nx], [2ny, 2ny, 2ny], [2nz, 2nz, 2nz]])

− [f([2nx, 2nx, 2nx]), f([2ny, 2ny, 2ny]), f([2nz, 2nz, 2nz])]
∥∥∥

≤ lim
n→∞

1
49n

ϕ
(
2nx, 2ny, 2nz

)
≤ lim

n→∞
1
4n

ϕ
(
2nx, 2ny, 2nz

)
= 0

and so

Q([[x, x, x], [y, y, y], [z, z, z]]) = [Q([x, x, x]), Q([y, y, y]), Q([z, z, z])]

for all x, y, z ∈ A.
The rest of the proof is similar to the proof of Theorem 2.1 ¤

Corollary 2.4. Let r, θ be nonnegative real numbers with r < 2 and let f : A → B

be a mapping satisfying (2.6) and (2.7). Then there exists a unique C∗-ternary
quadratic 3-Jordan homomorphism Q : A → B such that

‖f(x)−Q(x)‖ ≤ 2θ

4− 2r
‖x‖r

for all x ∈ A.

Proof. Defining ϕ(x, y, z) = θ(‖x‖r +‖y‖r +‖z‖r) in Theorem 2.3, we get the desired
result. ¤
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