DOI QR코드

DOI QR Code

재가중치 ℓ1-최소화를 통한 밀리미터파(W밴드) 전방 관측 초해상도 레이다 영상 기법

Millimeter-Wave(W-Band) Forward-Looking Super-Resolution Radar Imaging via Reweighted ℓ1-Minimization

  • 이혁중 (한국과학기술원 전기 및 전자공학부) ;
  • 전주환 (한국과학기술원 전기 및 전자공학부) ;
  • 송성찬 (한화시스템)
  • 투고 : 2017.05.16
  • 심사 : 2017.08.01
  • 발행 : 2017.08.31

초록

실 개구(real-aperture)를 사용하는 스캐닝 레이다(scanning radar)는 지상을 감시하거나 재난 구조를 하는 등 폭 넓게 이용 가능하다. 그러나 스캐닝 레이다의 특성상 거리 방향의 분해능은 송신하는 신호의 대역폭에 의해 제한되며, 거리방향에 수직한 방향의 분해능은 빔 폭에 의해 결정된다. 본 논문에서는 초해상도(super-resolution) 레이다 영상 기법을 제안한다. 산란체가 스캔 영역에 드문드문 존재한다면 반사율의 분포를 sparse 신호로 간주할 수 있게 되고, '압축 감지(compressive sensing)' 문제로 수식화하는 것이 가능하다. 본 논문에서는 '재가중치 ${\ell}_1$-최소화'를 통해 2차원 레이다 이미지를 얻는다. 모의실험 결과에서는 제안하는 기법으로 얻은 이미지와 더불어 기존에 널리 쓰이는 Orthogonal Matching Pursuit(OMP), 합성 개구 레이다(Synthetic Aperture Radar : SAR)의 결과와 비교하였다.

A scanning radar is exploited widely such as for ground surveillance, disaster rescue, and etc. However, the range resolution is limited by transmitted bandwidth and cross-range resolution is limited by beam width. In this paper, we propose a method for super-resolution radar imaging. If the distribution of reflectivity is sparse, the distribution is called sparse signal. That is, the problem could be formulated as compressive sensing problem. In this paper, 2D super-resolution radar image is generated via reweighted ${\ell}_1-Minimization$. In the simulation results, we compared the images obtained by the proposed method with those of the conventional Orthogonal Matching Pursuit(OMP) and Synthetic Aperture Radar(SAR).

키워드

참고문헌

  1. Graham Brooker, Alan T. Brooker, Introduction to Sensors for Ranging and Imaging. SciTech Pub. Incorporated, 2009.
  2. C. Ozdemir, Inverse Synthetic Aperture Radar Imaging with MATLAB Algorithms. Vol. 210, John Wiley & Sons, 2012.
  3. M. Soumekh, Synthetic Aperture Radar Signal Processing, New York: Wiley, 1999.
  4. S. Senmoto, D. G. Childers, "Signal resolution via digital inverse filtering", IEEE Transactions on Aerospace and Electronic Systems, vol. AES-8, issue 5, pp. 633-640, 1972 . https://doi.org/10.1109/TAES.1972.309578
  5. M. A. Richards, "Iterative noncoherent angular superresolution [radar]", Radar Conference, 1988., Proceedings of the 1988 IEEE National, 1988.
  6. M. Migliaccio, A. Gambardella, "Microwave radiometer spatial resolution enhancement", IEEE Transactions on Geoscience and Remote Sensing, vol. 43, issue 5, pp. 1159-1169, May 2005. https://doi.org/10.1109/TGRS.2005.844099
  7. A. Gambardella, M. Migliaccio, "On the superresolution of microwave scanning radiometer measurements", IEEE Geoscience and Remote Sensing Letters, vol. 5, issue 4, pp. 796-800, Oct. 2008. https://doi.org/10.1109/LGRS.2008.2006285
  8. R. Bose, A. Freedman, and B. D. Steinberg, "Sequence CLEAN: A modified deconvolution technique for microwave images of contiguous targets", IEEE Transactions on Aerospace and Electronic Systems, vol. 38, issue 1, pp. 89-97, Jan. 2002. https://doi.org/10.1109/7.993231
  9. Y. Zha, Y. Zhang, Y. Huang, and J. Yang, "Bayesian angular superresolution algorithm for real-aperture imaging in forward-looking radar", Information, vol. 6, no. 4, pp. 650-668, 2015. https://doi.org/10.3390/info6040650
  10. Y. Zha, Y. Huang, Z. Sun, Y. Wang, and J. Yang, "Bayesian deconvolution for angular super-resolution in forward-looking scanning radar", Sensors (Basel, Switzerland), vol. 15, no. 3, pp. 6924-6946, 2015. https://doi.org/10.3390/s150306924
  11. Y. Zhang, Y. Huang, Y. Zha, and J. Yang, "Superresolution imaging for forward-looking scanning radar with generalized Gaussian constraint", Progress in Electromagnetics Research M, vol. 4, no. 6, pp. 1-10, 2016.
  12. Y. C. Pati, R. Rezaiifar, and P. S. Krishnaprasad, "Orthogonal matching pursuit: Recursive function approximation with applications to wavelet decomposition", Signals, Systems and Computers, 1993. 1993 Conference Record of The Twenty-Seventh Asilomar Conference on, IEEE, 1993.
  13. E. J. Candes, M. B. Wakin, and S. P. Boyd, "Enhancing sparsity by reweighted 1 minimization", Journal of Fourier Analysis and Applications, vol. 14, no. 5-6, pp. 877-905, 2008. https://doi.org/10.1007/s00041-008-9045-x
  14. M. Grant, S. Boyd, and Y. Ye, "Cvx: Matlab software for disciplined convex programming", 2008.