DOI QR코드

DOI QR Code

Synthesis and Characterization of Red Organic Fluorescent of Perylene Bisimide Derivatives

Perylene Bisimide 유도체의 적색 유기 형광체 합성 및 특성 연구

  • Lee, Seung Min (Department of LED Convergence Lighting for Shipbuilding, Pukyong National University) ;
  • Jeong, Yeon Tae (Department of LED Convergence Lighting for Shipbuilding, Pukyong National University)
  • 이승민 (부경대학교 LED융합공학전공) ;
  • 정연태 (부경대학교 LED융합공학전공)
  • Received : 2017.06.19
  • Accepted : 2017.07.31
  • Published : 2017.09.01

Abstract

The white light of a hybrid LED is obtained by using red and green organic fluorescent layers made of polymethylmethacrylate (PMMA) films, which function as color down-conversion layers of blue light-emitting diodes. In this research, we studied the fluorescence properties of a red organic fluorophore, employing perylene bisimide derivatives applicable to hybrid LEDs. The solubility, thermal stability, and luminous efficiency are important characteristics of organic fluorophores for use in hybrid LEDs. The perylene fluorescent compounds (1A and 1B) were prepared by the reaction of 4-bromophenol and 4-iodophenol with N,N'-bis(4-bromo-2,6-diisopropylphenyl)-1, 6,7,12-tetrachloroperylene-3,4,9,10-tetracarboxyl diimide (1) in the presence of dimethyl formaldehyde (DMF) at $70^{\circ}C$. The synthesized derivatives were characterized by using $^1H-NMR$, FT-IR, UV/Vis absorption and PL spectra, and TGA analysis. Compounds 1A and 1B showed absorption and emission at 570 nm and 604 nm in the UV/Vis spectrum. We also documented favorable solubility and thermal stability characteristics of the perylene fluorophores in our work. Perylene fluorophore 1, with the 4-bromophenol substituent 1A, exhibited particularly good thermal stability and solubility in organic solvents.

Keywords

References

  1. G. Singh and D. S. Mehta, J. Opt., 15, 025710 (2013). [DOI: https://doi.org/10.1088/2040-8978/15/2/025710]
  2. D. Bera, S. Maslov, L. Qian, J. S. Yoo, and P. H. Holloway, J. Disp. Technol., 6, 645 (2010). [DOI: https://doi.org/10.1109/JDT.2010.2064284]
  3. S. B. Raut, S. J. Dhoble, and R. G. Atram, Adv. Mat. Lett., 2, 373 (2011). [DOI: https://doi.org/10.5185/amlett.2011.3075am2011]
  4. F. Galeotti, W. Mroz, M. Catellani, B. Kutrzeba-Kotowska, and E. Kozma, J. Mater. Chem. C, 4, 5407 (2016). [DOI: https://doi.org/10.1039/C6TC00486E]
  5. E. Kozama, W. Mroz, and F. Galeotti, Dyes Pigm., 114, 138 (2015). [DOI: https://doi.org/10.1016/j.dyepig.2014.11.009]
  6. P. S. Hariharan, J. Pitchaimani, V. Madhu, and S. P. Anthony, J. Fluoresc., 26, 395 (2016). [DOI: https://doi.org/10.1007/s10895-015-1725-8]
  7. L. Zhang, D. He, Y. Liu, K. Wang, Z. Guo, J. Lin, and H. J. Zhang, Org. Lett., 18, 5908 (2016). [DOI: https://doi.org/10.1021/acs.orglett.6b03012]
  8. K. S. Park and Y. T. Jeong, J. Korean Inst. Electr. Electron. Mater. Eng., 24, 398 (2011). [DOI: https://doi.org/10.4313/JKEM.2011.24.5.398]
  9. K. Baek and Y. T. Jeong, J. Korean Inst. Electr. Electron. Mater. Eng., 25, 140 (2012). [DOI: https://doi.org/10.4313/JKEM.2012.25.2.140]
  10. S. M. Lee and Y. T. Jeong, J. Korean Inst. Electr. Electron. Mater. Eng., 30, 48 (2017). [DOI: http://dx.doi.org/10.4313/JKEM.2017.30.1.48]
  11. Z. Yuan, J. Li, Y. Xiao, Z. Li, and X. Qian, J. Org. Chem., 75, 3007 (2010). [DOI: https://doi.org/10.1021/jo100231j]
  12. J. Choi, C. Sakong, J. H. Choi, C. Yoon, and J. P. Kim, Dyes Pigm., 90, 82 (2011). [DOI: https://doi.org/10.1016/j.dyepig.2010.11.006]
  13. S. Y. Min, J. Bang, J. Park, C. L. Lee, S. W. Lee, J. J. Park, U. Y. Jeong, S. J. Kim, and T. W. Lee, RSC Adv., 4, 11585 (2014). [DOI: https://doi.org/10.1039/c3ra46809g]
  14. D. L. Dexter and J. H. Schulman, J. Chem. Phys., 22, 1063 (1954). [DOI: https://doi.org/10.1063/1.1740265]