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GLOBAL W;’z ESTIMATES FOR NONDIVERGENCE
PARABOLIC OPERATORS WITH POTENTIALS SATISFYING
A REVERSE HOLDER CONDITION

GUIXIA PAN AND LIN TANG

ABSTRACT. In this article, we first give the LP boundedness of the op-
erator D2L~1 with BMO coefficients and a potential V satisfying an
appropriate reverse Holder condition, then obtain global Wp1 2 estimates
for the nondivergence parabolic operator L with VMO coefficients and a
potential V satisfying an appropriate reverse Holder condition.

1. Introduction

Throughout this paper we will use =, %/, ..., to indicate points in R"*! and
x,, ..., for points in R™ corresponding to the first n coordinates, i.e., we will
write 2’ = (2,t) = (z1,...,7n,t) € R We denote by B(z,r) the ball of
center x and radius r in R™.

Let L be the linear, second-order parabolic operator of the form

Lu(2') = Au(2") + V(x)u(z") = u(2’) — aij (2 )ue,o, (") + V(z)u(z'),

where 2’ € R™t!. We assume that the principal part of the operator is bounded,
symmetric and uniformly elliptic, i.e.,

(1.1)
< 1
aij(z') € L®(R™), a;(2') = aji(2’) and <[¢|> < Y ay(2)&i€; < =€)

= S
1,7=1

fori,7 =1,2,...,n and some ¢ > 0 and for every &' € R"*! and ¢ € R™.

In this paper, we always assume that
(1.2) aij(z') € BMO(R")

which means that for parabolic BMO spaces and || a;; ||« stands for the BMO
seminorm (see the definitions in the next section).
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1358 G. PAN AND L. TANG

We also always suppose V' is not identically zero and
(1.3) V e B, forsome ¢> g,

which by definition means that V € L] (R™), V > 0 and there exists a constant
C > 0 such that the reverse Holder inequality

(1.4) (ﬁ/BV(x)qu)% gC(ﬁ/BV(x)dx)

holds for every ball B in R™.

Note that the B, class has the following properties: if V € B, for some
q > 1, then there exists an ¢ > 0, which depends only on n and the constant C'
in (1.4), such that V' € By.. Clearly, V is a Muckenhoupt A, weight [11,15].
V(y)dy is a doubling measure (see e.g. in [15]), that is, there exist positive
constants a and C' such that

(15) [ veascr [ v
B(z,2r) B(z,r)
We define parabolic balls of center 2/ = (z,t) € Rl and radius r by
Q' r) ={y = (y,8) e R" L : |z —y| <1, |t — s| <r?}. Also by BQ(z',7) we
will mean the ball having the same center as Q(2’,r) and radius Sr.

(16) ai; € VMO(RnJrl)
which means that for 4,5 = 1,2,...,n, a;;(z') € BMO(R""!) and

1 I
7§ (r) = sup (—I / laii(y') — %ﬂdy')
p<r | P| 1,

(which is finite for every r since a;; is bounded) vanishes for » — 0. Here

I, ranges over the class of parabolic balls in R"*1 of radius p and ai[j’? =
o Jr, @i (W) dy'-

Recently, many people are interested in the global W?2? estimates and LP
boundedness of the elliptic operators and parabolic operators; see [2,4-7,10,13,
14,16,18]. In particularly, under the assumption V' € By, Shen [14] proved the
LP boundedness of D?(—A + V)~ on R", where V = V(z) belongs to some
reverse Holder class. Then, Bramanti, Brandolini and Harboure [1] gave global
W?2P estimates for elliptic operators —a;;(2)us, 2, + V(x)u(x) with VMO co-
efficients and a potential V satisfying an appropriate reverse Holder condition,
see also [18]. Recently, the authors [12] obtained global WP estimates for
elliptic operators with divergence and nondivergence forms with more general
VMO coefficients and a potential V satisfying an appropriate reverse Holder
condition. On the parabolic operator case, A. Carbonaro, G. Metafune, C.
Spina [4] got the LP estimates of the parabolic operator D?(9; — A + V)~!
where V' = V/(z,t) is a nonnegative potential which belongs to the Parabolic
Reverse Holder class; see also [8]. Later, Tang and Han [17] studied the LP
boundedness of other parabolic Schrodinger type operators. Recently, Tang



GLOBAL W;’Z ESTIMATES FOR NONDIVERGENCE PARABOLIC OPERATORS 1359

[16] obtained weighted LP solvability for parabolic equations with partially
BMO coefficients and nonpotentials.

Inspired by the above results, in this paper, we consider the global estimates
for the parabolic operator L with appropriate assumptions.

2. Some preliminaries and notations

Let’s now endow R"*! withe the following parabolic metric. Define the
parabolic distance

d((x,1), (y,8) = (Jo —y|* + |t — s])

for any (x,t), (y,s) € R*+L.
Let’s recall the definition of parabolic BMO spaces. We say that f € Lj,,
is in the space BMO(R""!) if the BM O seminorm

1 A /
| f I*—sgp@/Qlf(w) foldz

is finite, where ) ranges over the class of parabolic balls in R"™! and fg =
ﬁfo(ac')dx’.

Let’s recall some definitions and results of real analysis which hold in this
“parabolic” context.

For f € L} (R™"1), define the parabolic maximal function

Mf() = sup ~ / FW)Idy, Mif(a') = M(fHY (@), 1> 0;
Qox’ |Q| Q

and the parabolic sharp function

i N — L AN /
M f(z") sup |Q|/Q|f(y) foldy',

where in both functions, the sup is taken over all parabolic balls Q in R"*!.
The next four well-known lemmas follow from results stated in [3].

Lemma 2.1 ([3], Maximal inequality). For f € LP, 1 < p < 0o, we have

| Mf |lpr@n+y< C() || f llzo@n+ry -

Lemma 2.2 ([3], John-Nirenberg type lemma). For1 <p < oo, let f € BMO
and Q) be a parabolic ball, we have

(@ - f@l”dy’>le <C | f1..

Lemma 2.3 ([3], Sharp inequality). For every p, 1 < p < oo, there exists a
constant C' = C(p) such that if f € LP, then

I f llLo@ay< C || MAf || pognry -
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Lemma 2.4 ([3]). Let f € BMO. Then, for any positive integer j and para-
bolic ball Q

laziq —aq| < C(n)j |l a |« .

Now we recall the definition and some properties of the auxiliary function
my (z); see [13] and [14] for = € R™, the function my (x) is defined by

1 1
T) = =sup<r: Viydy <15,.
o) = s p{ = (y)y_}

We have the following lemma about my (z).

Lemma 2.5 (Lemma 1.4 in [14]). Let V € B, with ¢ > %. For some positive
integer ko and any x,y € R", we have:

(a) my(z) ~my(y) if |z =yl < 5%

(b) my(y) < C(1+ |z = ylmy (2)" my (2),

c
(c) my(y) > (1+|x,y|mn$‘(/x;c)ko/<ko+1>'

In view of Corollary 1.5 in [14], the following inequalities hold

C{1+my()|z -y} <1+my(y)le —yl < C{L+my(y)e —yl}*.

Hence we can replace my (z) with my (y) possibly changing the integer k.
Using the Hélder inequality and the B, condition we see that

V(y) 1
(2.1) [ ycons [ v
B(z,r) [T — y[" 2 R"2 |, pr)
and for V € B,,
V(y) 1
(2.2) / T dy < C—— / V(y)dy.
B(z,r) |7 —y["! R Jp . r)

Lemma 2.6 (Lemma 1.2 in [14]). There exists a C > 0 such that, for any
0<r<R<oo,

T2

1 / R
Vydygc(—) —/ V(y)dy.
2 JBar) W) r R Jp(a,R) )

Lemma 2.7 (Theorem 1in [9]). LetV € B, )5 and T € R. Suppose I'(z,t;y, s; )
is the fundamental solution to Oyu — Au+ Vu =0 in R*1. Then

Cl e—Colz—y|?/(t—s)
(1+mV($)d(($at)’(ya5)))k (t*S)%

for any (z,t), (y,s) € R*™! and t > s, C) is constant depending only on n,k
and the constant in (1.5) and Cy is constant depending only on n.

D (x,t;y,5:7)] <
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Lemma 2.8 (Lemma 2.3 in [2], pointwise Hérmander condition). Let K be a
parabolic Calderon-Zygmund Kernel. Then for any parabolic ball Q of center
:LJCQ ( !/ /

(', xp)

’ ’ ’ ’ Q
K=y~ Kl =] < O g e
forx' € Q,y ¢ 2Q.

3. LP estimates for small a;; € BMO(R"t1)
Our main result in this section is as follows.

Theorem 3.1. Suppose a;; satisfying (1.1) and (1.2) fori,j =1,2,...,n, for
every 1 <p < q and V € By, there exists a constant C' > 0 such that

(3.1) || Diju ||Lp(Rn+1) + || Vu ||Lp(Rn+1)§ C || Lu HLp(]Rn+1)

provided that || a;j ||«< € for small €, where the constants C' and € depend on
n, p, the ellipticity constant ¢ and the By constant of V.

We remark that A. Carbonaro, G. Metafune, C. Spina [4] proved L? bound-
edness for Parabolic Schrédinger operators. Theorem 3.1 generalizes main re-
sults in [4] to discontinuous coeflicients case. Of course, they in [4] considered
more general V.

To prove Theorem 3.1, we need the following Theorem 3.2 proved essentially
in [2]. Next, we will give another proof.

Theorem 3.2. Suppose a;; satisfying (1.1) and (1.2) for i,j = 1,2,...,n.
For any 1 < p < oo there exists a positive constant C' depending on n, p, the
ellipticity constant ¢, and the BMO seminorm of the leading coefficient such
that

| D*u || Lonsy < C || Au || Lo ey
provided that || a;; ||«< € for small € depending on n, p, the ellipticity constant
s and the B, constant of V.

Proof. We first prove the following inequality
1
(32) M¥(Diju)(2) < C || agj | Mip(Dysju)(2) + CMi(Au)(2)

forl<l<oo,l<v<ooandl/v+1/v=1.

For any parabolic ball Q in R®*! containing the point z € R™*!. Let
Aogu = Opu — agumﬂj with ag = ‘—é‘ fQ a;j(y")dy’. Let C be a constant to be
fixed along the proof. We have

1
@ /Q |Diju — C|dy'

1 _
= @/Q|Dijf401(f4w)—0|dy'
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1 —1 /
= @ |DijAg " (Aouxaq + AOUX(2Q)C) — Cldy

:fI+II.

IQI |D;j A ' (Aoux(2g)e) — Cldy’

Applying Holder inequality and the L'(R™*!) boundedness of D;;Ay" (since
Di; Ay 1'is a parabolic Calderén-Zygmund operator), we obtain

1 —
1<(@L/MMAwmmwmw@)

oG s
Qm/me()IMWW@>1+CQ@/’meW@)T

< CI + CM;(Au)(2).

Now let us estimate I;.

[}

1 [2
Il = (—/ |A0’U, — Au|ldy/)
1Ql J20
1 Q 17 i
=\1al /o (aij — a;5)Dijul’dy
lL

1 LN (1 z
_c(—/’m-aﬂ“@) (g [ 1psulay)
Q] Jog "9~ Q1 S

<C| ay H* My, (Diju)(z).
Therefore we have
I <C | aig &7 Miy(Diju)(z) + CMi(Au)(2).

Taking C = DijAal(AOux(QQ)c)(y{)), where y(, is the center of the parabolic
ball ), we have

II |Q|/ |Dij Ay (Aoux(2q)-) — Cldy’

@LWMHMMWW)%%MWWMMW

Now we estimate J = D;; Ay (Aoux(2q))(y') —Dij Ay (Aoux2q)) (¥p). Let
K be the parabolic Calderén-Zygmund kernel of operator D;;Ag. By Lemma
2.8, we have

75 [ KW =) = K= 2l vl
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d(y', yp)
< —2 2T Agu(2)|dz
_/QQC d(y’, Z)n+3| oulz)

oo

<

Z/ )
— k 3
=1 2kr<p(z,y0)<2k+1r (2 T)nJr

|Apu(z) — Au(z) + Au(z)|dz

k l t
< CZQ (2k+1Q| 2kHQ|AOu—Au| dz) + CM;(Au)(z)

< C || ay Hi”_/ My (Diju)(2) + CMi(Au)(z).

Thus (3.2) holds.
By Lemma 2.1, Lemma 2.3 and (3.2), if lv < p, we then get

| Diju ||» <|| M*(Diju) ||L»
1
< C |l aij [ ]| Miv(Digu) [[ze +C || Mi(Au) [|1e
1
< C |l aij [&7]] Dijul[ze +C || Au |l -

1 ’ ’
Note that 77, || ai; [[& < n%(€)!/"" and taking € = (535)"", we can obtain
the desired result. O

Theorem 3.3. Under the assumptions (1.1)-(1.3), for any 1 < p < q there
exists a positive constant C' depending on n, p, q, the ellipticity constant ¢, and
the By constant of V' such that

|| Vu ||Lp(Rn+1)§ C || Lu ||Lp(]Rn+1),
provided that ||a;j||« is small.
By Theorems 3.2 and 3.3, we have:

Corollary 3.1. Suppose a;; satisfying (1.1)-(1.3) fori,j =1,2,...,n. For any
1 < p < gq, there exists a positive constant C depending on n, p, the ellipticity
constant s and the BMO seminorm of the leading coefficient such that

| D*u || ey < C || Lu || Loy,
| aij |[«< € for small €.

To prove Theorem 3.3, we freeze the coefficients of A at xy and get the
operator

Lou(z') = ui(z") — a;j (o, t0)Uz;z; (') + V(z)u(z').
Let Aou(a') = u(2') — aij (0, to)te,q, (2'). For any u € Cg°(R™*1), 2/ € R™H1,
we can write:

u(z,t) =

t
/ L(z,t;y, s)Lou(y, s)dyds

I
/

/ I(x,t;y,s)Lu(y, s)dyds

n

=

— 00
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+ /_Oo /n [(xz,t;y, s)[Aou(y, s) — Au(y, s)]dyds.

Let o = x, we have:

u(z, t) = / t / e, tiy, 5) Luy, s)dyds

oy / [ Tt 5)ass00) - s (e, (0,9,

7,j=1
For every positive integer k, by Lemma 2.7 we get:

1 e~ Cole—yl?/(t—s)

Ve <0Va [ | G i

< 1Luly, )|+ D laij(y,5) = aij(2,0)|luy,y, (v, 5)| | dyds

i,j=1

¢ 1 1
=GVl /,oo /. (1 + my (@)d((2, 1), (g, 9)* (@) (4,5)"

x | |Lu(y, s)| + Z laij(y,s) — ay(x,t)|uy,y, (y,s)| | dyds.

i,j=1
For any o’ = (x,t) € R"*! and any positive integer k. Let us introduce the
integral operators:

1 1 .
W=V [ R T e s
1

1
Skaf(@ / / @A @D o) @D oy @)

t
la(y, s) — alx,t)] dyds.

Then, we have

(3.3) | V(z)u(z,t) |< CrSk(|Lu|)(x,t) Z Skai; ([, ]) (2, 1).

,j=1
We will prove that for any 1 < p < g and for k large enough
(3.4) | Skf lLr@n+)y< C |l f |le@n+ry
and
(3.5) | Sk.af lLe@n+1)y< Cllalls || f |e@nt1y -

Now, by (3.3)-(3.5) and Theorem 3.2, for any u € C§°(R"*!), we have

n
I Vulzr <C | Lu e +Ce Y | g, oo

i,j=1
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<O Lu || +Cn’e || Au || e
< (C+Cn%e) || Lu||zr +Cne || Vu|lzs -

Ife<s 20, we get Theorem 3.3.
In order to do that, it is more convenient to consider the transposed operator:

V() , 1 S\duds:
Sif (2.1) / /. Lt v @d(@.0). (o))" @ D), s s

Viy) 1
Stof(@,1) / / - f(y,s)
" " 1 +my ﬂl‘)d ( ,t) ( )))k d((xvt)v (yvs))
Ia(y, s) — al(z, )| dyds.
Proposition 3.1. Let V € By, ¢ > %. For k large enough and ¢’ < p < oo,

% + % = 1, the operator S} is continuous on LP(R"*1).

Proposition 3.2. Suppose V € By, ¢ > 5 and a € BMO. For k large enough
and ¢ < p < o0, % + i =1, then there exists a constant C' such that

ISkl lp@meny< Cllall || f llr@ner -

By duality, the above propositions imply (3.4), (3.5). Therefore, the rest of
this section will be devoted to the proof of Proposition 3.1 and Proposition 3.2.

Proof of Proposition 3.1. Since the kernel is positive, we can also assume f > 0.
Also, we may assume ¢ > n/2 because of the property B, = Byi. for some
e>0.

We will prove the following pointwise bound

(3'6) SZf('T’t) < CMq’f('T’t)a

where % + % = 1.

By the maximal inequality, for p > ¢/, (3.6) implies Proposition 3.1. When
p = ¢, we apply again the fact that actually V' € By4. for some € > 0, as
already noted, so that (3.6) also holds with a smaller ¢'.

* V(y) . 1
Skf(SC, t) < C/d((m D)) <p() (1+ d((%:();()yws)) )k d((z,t),(y,s))"f(y’ S)dyds

+C’/ Ivgy) S 1 —F(y, 5)dyds
d((z,t),(y,5))>p(z) (1+%)k d((@,t),(ys))
= C/ mﬂy, s)dyds

d((z,t),(y,s))<p(z) RASH

k
+C o) s [y, 5)dyds
D)) 20(a) (d(( 0., >>) (@0, (4:9))

= A(z,t) + B(z,t).
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Let Q; = Q((z,t),277p(x)). By Holder inequality and V € By, we obtain

3

1
Az, t) < C 7/ V(y)f(y,s)dyds
(@:1) Z(2 Ip(@)™ Ja((w,t).(y,5))~2-7p(x) W)7:2)

7=0

1
7

S 1 q ‘ q !
CZO o))" < o, V(y) dyds) </Qj |f(y,s)| dyds)

-
— (277p(x))"

1
|B(SC, 27]p($))| B(z,277p(x))

IN

IN

M8“

C (Q_jp(.r))(n+2)/q/ (2_jp(x))(n+2)/q

Q
O

V(y)dyds)

1
7

1 ) 7
) (W /Qj o)

> 1

B(z,27p(x))

here and in what follows, d((x,t), (y,s)) ~ 277 denotes 2/r < d((z,1), (y,s)) <
2/+1r. By Lemma 2.6, we have

1 R\ % 1
3.7 — VydySC’(—) —/ V(y)dy
(3.7) " o () r) B L ()

for any 0 < r < R < oo. Taking R = p(x) and r = 277 p(z) in (3.5), we obtain

Alwnt) < My f(@:8) 2, (27p(@)” (2) <|B(z,p<sc>>| B@p(m))”y)dy>
< OMy f(z,t) V(y)d 9=9)* "4
" < B(w(z)) w y);( )
< CMq/f(l',t),

where up to the last inequality applies p(z)% fB(I o)) V(y)dy < 1.
Similar to the estimates of A(x,t), let Q; = Q((z,t),27p(z)) and we obtain

27k

oo V() S (5. 5)dyds
pla d((x,1),(y,8))=27 p(x)

L

2jk % , q’
V(y)idyds , )| dyds
(/j (y)*dy ) </Q_|f(y )| dy )

J

M8 gM%%
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— (27p(x))? 1
<OMy fz,)y 23k (IB(x,QjP(w)ﬂ /B(z,zfp(x»

j=0
Since V (y)dy is doubling, for some positive constant «, C' and all j, we have

/ Vg2 [ vy
B(x,27 p(x)) B(z,p(z))

V(y)dyds) .

Thus

(2p(x)” 2%
20k (29p(x))" /B(m,p(w)) V)dy

1 > 1
=CMy f(z,t)———— / V()dy Y o
q p(z)n—2 Blap(x) JZ::O 9j(k+n—a—2)

< OMy f(a,t),

B($,t) < CMq’f(xat)i

j=0

where we used again p(m)% fB(m o(2)) V(y)dy < 1 and we have chosen k large
enough to get (k4 n — a — 2) positive. The proof is complete. O

In order to prove Proposition 3.2, it is convenient to settle this result in a
suitably abstract framework. Let

V(y) 1

d(@ .9\ d((x, 1), (y, )"
1 4 e ) ((z:1), (y,5))

(3.8) w((z,1), (y, ) = (
be the kernel of the integral operator S, so that

Skaf(x,t) = /W((wat), (v, 5)laly, s) — a(z,t)|f(y, s)dyds.
We will deduce Proposition 3.2 from an abstract result.

Definition 3.1. We say that the kernel W ((z,t), (y, s)) satisfies “Hérmander’s
condition of order ¢” in the first variable, briefly W € H;(q) if there exists a
constant C such that for any r» > 0

1
a

3 (i) ( / W (2, 1), (3, 5)) — w«xo,to),(y,s))qdyds) <c.
27 r<d((y,s),(zo,t0))<29t1r

Jj=1

Proposition 3.3. Let W ((z,t), (y,s)) be a nonnegative kernel satisfying H1(q)
for some q¢ > 1 and such that the integral operator

Tf(z,t) = W((z,1), (y,5))f((y, 5))dyds

]Rn+1

is continuous on LP(R™Y) for any ¢ < p < oo. Then for b € BMO(R"*1)
the operator

Tfant) = [ 1bGo0) = by )| W (0.0, (0, 0) 05



1368 G. PAN AND L. TANG

is bounded on LP(R™™1) for any ¢’ < p < oo and

I Tof < C N O f llps
where || b ||« stands for the BMO seminorm.
Proof of Proposition 3.3. We may assume b € L= (R"*!) to prove this propo-
sition and then remove it by a standard truncation.

We will prove the following pointwise inequality: for any h > ¢’, there exists
a constant C such that

(3.9) MY Ty f)(2) < C | b |l [Mu(T f)(2) + (Mnf)(2)]
with C' independent of b and f.

Let Q = Q((wo,t0),7) = {(y,8) € R : |y — 20| < 1,5 — to| < 72} be a
parabolic ball such that z € Q. Let f = fi + fo with fi = fxaq, f > 0. For
any (z,t) € Q

Tof (z,t) = C| < |To fr(@, )| + |[To fo(z,t) = C| = T + 11

For the first term, we obtain

/ / oG, t) = ly, s)[ W (@, 1), (v, 9)) 1y, s)dyds
< |b x, t *bQ|Tf1(:C t) +T(|b*bQ|fl(1' t))

Choosing C = / [b(y, s) — bg| W ((x0, to), (y, s))dyds. Then,

II = |be2(.’L',t) -

c|
= Tufalet) = [ [ b05) = bl W, t0). (3. 5) alo )y

: /; / 1z, t) = bly, )W ((z, 1), (y, 5))
~[b(y. 5) = bolW (20, o). (4, )] fa(y, s)dyds

< /_; / I1b(z, ) — by, 8)| — |b(y, s) — boll W ((z, ), (4, $)) f2(y, s)dyds
+/_too/n 1b(y, s) — bol [W ((x,t), (y, )
—W (0, to), (y, 5))| f2(y, s)dyds

= /_; /n bz, t) — bo| W ((2,1), (y, 5)) f2(y, s)dyds

+/_ bl 5) = bal IW(@,1), (v, ) = W((@o, o), (v, 8))| fo(y, s)dyds.

Thus we have

Ty f (x,t) = C]|
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< |b(z,t) = bolT'f(x,t) + T (b — bl f1)(, 1)

b [ bG05) = bal W ((2:2) 3:5)) = W{(zosto), ()| foly: )y
= A(x,t) + B(z,t) + C(x, t).
For the first term, by Lemma 2.2, we get

1
— [ A dxd
|Q|/Q (x,t)dxdt

1
_ @/ 1b(x, 1) — bol| T f (x, t)dadt

Z' h X X X
<|Q|/|b ) = ol ddt) <|Q|/'Tf ”ddt)

[ 01« Mn(Tf)(2).
Next, we choose 7 such that h > v > ¢’. Then

ﬁ/ B(x,t)dxdt
-G /  bolfy) (@, t)dwdt

< (@ / (1~ bol 1) (o)t
c(|Q|/ 1b— bol 71 (2, 1) |”dxdt)

1 h % 1 (ﬂ/) >7(1%)

— dxd — b—bo|""Y dzd
SC<|c2|/m'f(“’”’“' 0 <|Q|/2 b= bol™ Tdwdt

1 h i (&Y v
‘C(I2Q| /2Q|f(:c,t)| dxdt) {(|2Q|/ 1b— bol dzdt) Hbo— b2Q|}

< Cb |« Mu(f)(2),

IN

1
5

where in the last inequality we have used |bg — bag| < C || b || and (h/l 7 +
(h/,y) = 1. Finally, since h > ¢/, we choose v such that 1 —|— + h = 1. Let

Q; = Q((zo,t0),27r). For any (z,t) € Q, applying Holder 1nequahty, Lemma
2.4 and the Hi(q) condition on W ((x,t), (y, s)), we have

C(z,t)

- |b(y’ S) - bQHW((I, t)v (yv S)) - W((‘TO, t0)7 (y7 8))\f(y, S)dyds
d((xo,t0),(y,s))>2r

= by, s) — bol||W((x,t), (y,s)) — W((xo,to), (y, s ,8)dyds
3= sy 1) =BG 0. 0180) = WGt ), 3115l
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<c / 1b(y 5) —bwyds)
2 ( (1), (y,9)) =207

Jj=

h
( / £y, s>|"/dyds)
Jd((zo,t0),(y,s))~=27r

1
q

2

X (/ W (2, 1) (y, 5)) W(xo,to)v(y,S)ﬂqdde)
d((zo,to),(y,s))~2r

1
oo 1 ~
Z )2 <— b~ bo, |7dyds> + |bg — bg,|

1Qj1 Ja((zo,to),(y,s)~2ir
1 7
X —/ W ((2,1), (y,5)) = W((zo, t0), (y, 5))|"dyds | Mpf(2)
|QJ| d((zo,to),(y,s))29r

<C| bl Muf(z) Y (27r) 42/
j=2

x (/ (W((z,1), (y,5)) = W((zo,t0), (¥, )|qdyd3>
d((zo,to0),(y,s))=29r
< CUb [l Muf(2).

1
q

(]
Proposition 3.4. The kernel w((x,t), (y,s)) in (3.8) satisfies condition Hy(q).

Proof. Because of the property B, = Bg4. for some ¢ > 0, we may as-
sume ¢ > 5. Let (z,t), (y,5), (zo,to) be such that d((x,t), (zo,t0)) < 7 and
d((y,S), ('rOvtO)) > 2r. Thus d((y,S), (antO)) ~ d((y’ S)’ (I,t)) Then

(W((2,1), (y,5)) = W((zo,t0), (y,5))]

1 1 1
< OV T o) G | T, o)~ d@orte) oo
4 1 1 B 1
A@ 0. 09 | L+ my QA0 @ s))F @+ @)d(@osto), 0. 5)))F
= A+ B.

For the term A, we have
CkV(y) « d((.’L‘,f), (ZCQ,tQ))
~ (T my (y)d((zo, to), (y,9)))* — d((wo, to), (y,5))"
For the term B, we have
pe OV 10, (19) = dl(@o,t), (v 9)lmy ()
—d((x, 1), (y,8))" (14 my (y)d((zo,t0), (y, )+
In the estimates of B, we have used the following inequality:
1 7 1 < kb it to]
(1+bt)F  (1+bt)*| ~ (1 +bp)ktt” 70
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for some ¢ € [to,t]. Now,

/ (1), (3, 8)) — ({0, o), (4, 8))|" dyds
29r<d((zo,to),(y,s))<27+1r

1

< / Aldyds | + / Bidyds
2ir<d((wo,to),(y,s)) <29+ 1r 27r<d((zo,to),(y,s)) <29+ r

We obtain

/ Aldyds
2ir<d((wo,to),(y,s))<2i+1r

CkT /
< . . V(y)ddyds
(1 +my (z)29r)k (20r)nt1 ( 257 <d((zo,t0),(y,s)) <217 )

Ck r ; _
< VN 9ip\(n+2)/q—n / Viy)dy.
= A+ my(@)2r)F (2],r.)n+1( 7) o020 10) (y)dy

so we have

S j(@ir) / Atdyds
P 27 r<d((zo,t0),(y,s))<27+1r
4 , C
< i(99 ) (n+2)/q _
- ;‘7( " Wy ()27

r i —n
X W(2JT)(H+2)/(I / V(y)dy

B(zg,2it1r)

Qlm

1
q

Q=

Q=

J r
k; (1 +my(x)29r)k X (20r)n—1 /B(wo,2j+1r) (y)dy

J r
= . . Viy)d
G 2. (L+ my (@)2ir)F ~ @iryn /B<> ()dy

J:27r<p(z)
J r
e )E (@) V(y)dy
j’QjTZZ/J(w) (L my(2)27r)% — (277)" " J (g 2010
= Al + AQ.

By (3.5) and the definition of p(x), we have

) 1
A<a Y Lo V(y)dy

J (23 )n—2 p
7:29r<p(zx) 2 (2 T) |zo—y|<20+1r

j(p@)\7? 1 /
< — -
< Ci Z 27 ( 2% ) 2@ ooyl <ne) V(y)dy

7:29r<p(zx)




1372 G. PAN AND L. TANG

<o ¥ (w0

j:2ir<p(z)

< Cy < Ck.

J
- J
7:29r<p(zx)

By the doubling condition on V(y)dy, the definition of p(x) and taking k large
enough, we obtain

J (p(x)
A2 < G Z 5(2”

j:29r>p(x)

- Viy)dy
T /|| )
<Cv Y,

k ; e}
1 ( - > /
29> p(@) @) =2 Xp(2) ) Jiwo-vl<o(a)

)
(57)

<o ¥ 3 (57) @ () v
(57)

|

lg’{|m.

j:29r>p(x)
k—(n—2—a)
j (rlx)
—C (£
k‘ Z 27\ 2Ir
7:29r>p(x)
J
< Cy Z oY < Cy.
j:29r>p(x)

We now check the analogous condition on the term B.

/ Bldyds
20r<d((zosto),(y,s)) <29 r

rmy (x) 1 /
< Cr—7a3 - V(y)idyds
@ (5 my @2 ( iritient n i

Crrmy (x) . -
= , 27y)(n+2)/a=2n / V(y)dy.
(1+mv($)23r)k+1( T) B(wo,2+19) (y)dy

1
q

Q=

Thus we have

S (@it ( /

; / C .
< Zj(QJr)(nJr?)/q krmy (z) i (2Jr)(n+2)/qf2n/ V(y)dy
J

q

B%lyds)

ir<d((w0.t0),(y,8)) <2 +1r

(1 4+ my (2)27r) B(ao,27+17)

1

7 r
= Cy , x x : / V(y)dy
; (2Jr)n_2 p(x) (1 + p2(JET))k+1 B(I072j+lr)
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J r 1
=C —— X X v / V(y)dy
2 P T D

J T 1
+ Cy - X X . / V(y)dy
Z (29r)n=2 " p(z) ~ (14 %)er Blzo,27+11) ()

3:297>p()
= Bl + BQ.

For the term By, we have

J r
j:2jrz<p(z) @) (@) oyl <2

J 1
< Cy Z 97 % (277 )n—2 /ﬂﬂo—y§21+1r V(y)dy,

2ir<p(x)

and from now on the estimate is the same as for the term A;.

' Ck r p(x) k+1/
By < . _ Viy)d
< Y gy (2 L

297 >p(a) o)
; k
J Ck (P(w)) /
< T2 X e X : V(y)dy,
j:2frz>:p(m> 2 (2m)ne 27 lzo—y|<29+1r
and from now on the estimate is the same as for the term As. O

Proof of Proposition 3.2. By Proposition 3.3 and Proposition 3.4 we get that
for k large enough and ¢’ < p < oo, we have

| Skaf lLo@n+y< Clla |l«ll f |l Lr@n+r)

when p = ¢’ we still use the fact that actually V' € By.. O
Now we turn to prove Theorem 3.1. In fact, by Theorem 3.3 and Corollary
3.1, we can get (3.1). O

4. Global LP estimates for a;; € VMO(R™T?!)

In this section, we consider the global L? estimates when a;; € VMO(R™*1).
We first give two lemmas.

Lemma 4.1. Under the assumptions (1.1), (1.3) and (1.6) for any 1 < p < g,
there exist constants C' and r such that for any zo € R" ™, u € C§°(B,(20))

| VullLes,(20)< C |l Lu || e (B, (20)) -

The constants C and r depend on n, p, q, the ellipticity constant s, the VMO
moduli of the leading coefficients and the B, constant of V.

Since the proof of Lemma 4.1 is very similar to the proof of Theorem 3.3,
we omit the details here.
M. Bramanti, M. C. Cerutti in [2] proved the following result.
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Lemma 4.2. Under the assumptions (1.1) and (1.6), for any 1 < p < oo, there
exist constants C' and r such that for any zo € R"*1, u € C§°(B,(20)),

| D*u || o8, 20 < C | At || (B, (20)) -

The constants C and r depend on n, p, q, the ellipticity constant g, the VMO
moduli of the leading coefficients.

Now we state the first main result in this section.

Theorem 4.1. Under the assumptions (1.1), (1.3) and (1.6), for every 1 <
p < q, there exists a constant C' > 0 such that

(41) oy + | Ve Lo < C{l L ooy + | 0 llzoganin}

for any u € C§(R™). The constant C depends on n,p,q, the ellipticity
constant g, the VMO moduli of the leading coefficients, and the B, constant of
V.

The bound (4.1) immediately extends to all functions u € Wpl?, (R™H1)) we
define that the closure of C§°(R™1) in the norm

|| u ||W;:‘2/(]Rn+1):|| u HW;’Z(]R"“) + || Vu ||Lp(]Rn+1) .
Proof of Theorem 4.1. By Lemmas 4.1 and 4.2, we get
| D*u || Lo+t
< C || Au ||Lp(]Rn+1)
< C{ll Au [|r@n+1y + || Du [|po@n+1y + || @ || ooty }
< C{ll Lu [l zo@n+ry + | Vu [[pp@nt1y + || Du || po@n+1y + [| w | o@n+1)}
and
|| Vu ||Lp(Rn+1)§ C {H Lu ||Lp(R'n.+l) + || Du ||Lp(]R'n.+l) + || U ||Lp(R'n.+l)} .
Applying the two inequalities above we have
lullwrz@neny + 11V l[Lo@n
<C {H Lu ||Lp(]Rn+1) + || Du ||Lp(]Rn+1) + || U ||Lp(]Rn+1)}.

Then, by the classical interpolation inequality (see [15])
5 C
I Du llzr@neny < € | D7u [l onsry +— Il lloo@nsy

and taking € = %, we get

I 12 gnsry + [ Vo lo@nsy < C{Il Lt | o@nsny + | w lloo@ny - o

Finally, we give the second main result in this section.
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Theorem 4.2. Suppose that the operator L satisfies (1.1), (1.3) and (1.6),
then there exist Ao, C > 0 such that for any 1 < p < q, A > Ao, u € C§°(R" 1)
the following estimate holds:

Il N2 oy < C Il Lt Xt || poensa) -
Proof. By Theorem 4.1, we have
1 g gy + 1| Vet lgogaos
< C{ll Lu+ M |po@n+y +(A+ 1) || w || pogn+1) } -

If A > )Xo > 1, then A+ 1 < 2X and it is seen that to prove Theorem 4.2, it
suffices to prove that

(42) A || U ||Lp(]Rn+1)§ C || Lu+ \u ||Lp(]Rn+1) .

We use a technique suggested by S. Agmon to get the above estimate from
Theorem 4.1. Consider the space

R"™2 = {(2,t) = (z,y,t) : t,y € R,z € R"}

and the function
u(z,t) = u(z,t)¢(y) cos(py),
where 1= v and ( is a C§°(R) function, ¢ # 0. And introduce the operator

Lv(z,t) = L(z,t)v(z,t) — vy (2, t).

It is easy to note that we can apply Theorem 4.1 to the operator L in R™H1
and the function 4. And we get

(43)  Ne oo < CTF (I L lpogmesny + 18 lzogensa) ) -

Now, since v > 1, we then have

/R C(y) cos(uy)Pdy > Cy > 0,

where the constant C; is independent of v. Hence,

-1
l Forn = O ([ leweostunpay) [ Janteio
—u(,t) (C”(y) cos(py) — 21’ (y) Sin(uy)) P dzdt

< O (s W nsay +7 + 1) 11 [ iy ) -
This and (4.3) yield
22 ||l pe@ny< O || Lt | po@nizy +C(p +1) || v || Lognsr) -
Since

L= C(y) cos(py) (Lu + Au) + u2u¢’ sin(py) — ¢ (y) cos(uy)],



1376 G. PAN AND L. TANG

we have
I L || Lo gnt2y< C || Lu+ M || po@niy +C(u+ 1) | w || po@nsry -
So that
MMl wflo@een< Co || Lu+ M [|po@esry +C3(VA+1) || || pogesr),

where Co, C5 are constants. For A > A\g = 166’32 + 4N3 we have Ng\/X < i/\,
N3 < I\ N3(VAA +1) < 4\ and we get 4.2 with C = 2C5. The proof is
complete. (I

Remark 4.1. Lemmas 4.1 and 4.2, Theorems 4.1 and 4.2 still hold if the con-
dition a;;(z") € VMO is replaced by the following condition, that is, for suffi-
ciently small €, there exists R > 0 such that

1
SUp laij (y') — (aij)Bldy" < e.
zpeR? r<R |B(:C()7T) B(xz(,r) “ “
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