References
- Hippert HS, Pedreira CE, and Souza RC. "Neural networks for short-term load forecasting: a review and evaluation". IEEE Trans Power Syst., vol. 16(1), pp. 44-55, 2001. https://doi.org/10.1109/59.910780
- T. Hong, J. Wilson, and J. Xie, "Long term probabilistic load forecasting and normalization with hourly information", IEEE Trans. Smart Grid, vol. 5, no. 1, pp. 456-462, Jan. 2014. https://doi.org/10.1109/TSG.2013.2274373
- D. Singhal and K. Swarup, "Electricity price forecasting using artificial neural networks", Int. J. Elect. Power Energy Syst., vol. 33, no. 3, pp. 550-555, Mar. 2011. https://doi.org/10.1016/j.ijepes.2010.12.009
- A. Karsaz, H. R. Mashhadi, and M. M. Mirsalehi, "Market clearing price and load forecasting using cooperative co-evolutionary approach", Int. J. Elect. Power Energy Syst., vol. 32, no. 5, pp. 408-415, Jun. 2010. https://doi.org/10.1016/j.ijepes.2009.11.001
- Hernandez, L., Baladron, C., Aguiar, J.M., Calavia, L., Carro, B., Sanchez-Esguevillas, A., Sanjuan, J., Gonzalez, L. and Lloret, J. "Improved short-term load forecasting based on two-stage predictions with artificial neural networks in a microgrid environment". Energies, vol. 6, pp. 4489-4507, 2016.
- N. Amjady and F. Keynia, "Short-term load forecasting of power systems by combination of wavelet transform and neuro-evolutionary algorithm," Energy, vol. 34, no. 1, pp. 46-57, Jan. 2009. https://doi.org/10.1016/j.energy.2008.09.020
- Kermanshahi B. "Recurrent neural network for forecasting next 10 years loads of nine Japanese utilities". Neurocomputing, vol. 23, pp. 125-133, 1998. https://doi.org/10.1016/S0925-2312(98)00073-3
- Pai P-F and Hong W-C. "Forecasting regional electricity load based on recurrent support vector machines with genetic algorithms", Electric Power Syst Res., vol. 74, pp. 417-425, 2005. https://doi.org/10.1016/j.epsr.2005.01.006
- Pai PF. and Hong WC. "Support vector machines with simulated annealing algorithms in electricity load forecasting", Energy Convers Manage, vol. 46(17), pp. 2669-2688. 2005. https://doi.org/10.1016/j.enconman.2005.02.004
- Chow TWS and Leung CT. "Neural network based shortterm load forecasting using weather compensation", IEEE Trans Power Syst, vol. 11(4), pp. 1736-1742. 1996. https://doi.org/10.1109/59.544636
- Metaxiotis K, Kagiannas A, Askounis D and Psarras J. "Artificial intelligence in short term electric load forecasting: a state-of-the-art survey for the researcher", Energy Convers Manage, vol. 44(9), pp. 1525-1534. 2003. https://doi.org/10.1016/S0196-8904(02)00148-6
- Lu CN, Wu HT, and Vemuri S. "Neural network based short term load forecasting", IEEE Trans Power Syst., vol. 8(1), pp. 336-342. 1993. https://doi.org/10.1109/59.221223
- Hong WC. "Electric load forecasting by support vector model", Appl Math Model, vol. 33(5), pp. 2444-2454. 2009. https://doi.org/10.1016/j.apm.2008.07.010
- Hahn H, Meyer-Nieberg S, and Pickl S. "Electric load forecasting methods: tools for decision making", Eur J Oper Res., vol. 199(3), pp. 902-907. 2009. https://doi.org/10.1016/j.ejor.2009.01.062
- Narendra, K.S. and Parthasarathy, K., "Identification and control of dynamical systems using neural networks", IEEE Transactions, Vol. 1 No. 1, pp. 4-27. 1990.
- Chen, S., Billings, S.A. and Grant, P.M., "Non-linear system identification using neural networks", International Journal of Control, Vol. 51 No. 6, pp. 1191-1214. 1990. https://doi.org/10.1080/00207179008934126
- Horne, B.G. and Giles, C.L., "An experimental comparison of recurrent neural networks", Proceedings of the Conference Neural Information Processing Systems 1994, MIT Press, Denver, pp. 697-704. 1995.
- [Online]. Available http://iso-ne.com/markets/hstdata/znl_info/hourly/index.html
- Omer F. E. "Forecasting electricity load by a novel recurrent extreme learning machines apprach", Int. J. Elect. Power Energy Syst., vol. 78, pp. 429-435. 2016. https://doi.org/10.1016/j.ijepes.2015.12.006
- Ekonomou, L., Christodoulou, C. and Mladenov, V., "A Short-Term Load Forecasting Method Using Artificial Neural Networks and Wavelet Analysis", Int. J. Power Syst., vol. 1, pp. 64-68. 2016.
- Raza, M. and Khosravi, A. "A review on artificial intelligence based load demand forecasting techniques for smart grid and buildings", Renew. Sustain. Energy Rev., vol. 50, pp. 1352-1372. 2015. https://doi.org/10.1016/j.rser.2015.04.065
- Venturini, M. "Simulation of compressor transient behavior through recurrent neural network models". J. Turbomach. Trans. ASME, vol. 128, pp. 444-454. 2006. https://doi.org/10.1115/1.2183315