DOI QR코드

DOI QR Code

거리 기반 유사도 측정을 통한 유방 초음파 영상의 내용 기반 검색 컴퓨터 보조 진단 시스템에 관한 연구

A Study of CBIR(Content-based Image Retrieval) Computer-aided Diagnosis System of Breast Ultrasound Images using Similarity Measures of Distance

  • Kim, Min-jeong (Interdisciplinary Graduate Program for BIT Medical Convergence, Kangwon National University) ;
  • Cho, Hyun-chong (Division of Electrical & Electronic Engineering and Interdisciplinary Graduate Program for BIT Medical Convergence, Kangwon National University)
  • 투고 : 2017.05.31
  • 심사 : 2017.07.28
  • 발행 : 2017.08.01

초록

To assist radiologists for the characterization of breast masses, Computer-aided Diagnosis(CADx) system has been studied. The CADx system can improve the diagnostic accuracy of radiologists by providing objective information about breast masses. Morphological and texture features were extracted from the breast ultrasound images. Based on extracted features, the CADx system retrieves masses that are similar to a query mass from a reference library using a k-nearest neighbor (k-NN) approach. Eight similarity measures of distance, Euclidean, Chebyshev(Minkowski family), Canberra, Lorentzian($F_2$ family), Wave Hedges, Motyka(Intersection family), and Cosine, Dice(Inner Product family) are evaluated by ROC(Receiver Operating Characteristic) analysis. The Inner Product family measure used with the k-NN classifier provided slightly higher performance for classification of malignant and benign masses than those with the Minkowski, $F_2$, and Intersection family measures.

키워드

참고문헌

  1. H. Cho, L. Hadjiiski, B. Sahiner, H. P. Chan, M. Helvie, C. Paramagul, et al., "Similarity evaluation in a contentbased image retrieval (CBIR) CADx system for characterization of breast masses on ultrasound images," Medical Physics, vol. 38, pp. 1820-1831, Apr 2011. https://doi.org/10.1118/1.3560877
  2. P. Espin-Lopez, A. Martellosio, M. Pasian, M. Bozzi, L. Perregrini, A. Mazzanti, et al., "Breast cancer imaging at mm-Waves: Feasibility study on the safety exposure limits," in Microwave Conference (EuMC), 2016 46th European, 2016, pp. 667-670.
  3. H. Cho, L. Hadjiiski, B. Sahiner, H. P. Chan, M. Helvie, C. Paramagul, et al., "A similarity study of content‐based image retrieval system for breast cancer using decision tree," Medical physics, vol. 40, 2013.
  4. W. Yang, S. Zhang, Y. Chen, Y. Chen, W. Li, and H. Lu, "Effective shape measures in malignant risk assessment for breast tumor on sonography," in Computer and Computational Sciences, 2008. IMSCCS'08. International Multisymposiums on, 2008, pp. 51-56.
  5. H. Cho, L. Hadjiiski, B. Sahiner, H. P. Chan, C. Paramagul, M. Helvie, et al., "Interactive content-based image retrieval (CBIR) computezr-aided diagnosis (CADx) system for ultrasound breast masses using relevance feedback," in SPIE, Medical Imaging 2012, 2012, pp. 831509-831509-7.
  6. J. Cui, B. Sahiner, H. P. Chan, A. Nees, C. Paramagul, L. M. Hadjiiski, et al., "A new automated method for the segmentation and characterization of breast masses on ultrasound images," Medical Physics, vol. 36, pp. 1553-1565, May 2009. https://doi.org/10.1118/1.3110069
  7. R. M. Haralick, K. Shanmugam, and I. Dinstein, "Texture features for image classification," IEEE Transactions on Systems, Man, and Cybernetics, vol. SMC-3, pp. 610-621, 1973. https://doi.org/10.1109/TSMC.1973.4309314
  8. S.-H. Cha, "Comprehensive survey on distance/similarity measures between probability density functions," City, vol. 1, p. 1, 2007.
  9. K. Belattar and S. Mostefai, "Similarity measures for Content-Based Dermoscopic Image Retrieval: A comparative study," in 2015 First International Conference on New Technologies of Information and Communication (NTIC), 2015, pp. 1-6.
  10. N. Bouhmala, "How Good is the Euclidean Distance Metric for the Clustering Problem," in 2016 5th IIAI International Congress on Advanced Applied Informatics (IIAI-AAI), 2016, pp. 312-315.
  11. M. D. Malkauthekar, "Analysis of euclidean distance and Manhattan Distance measure in face recognition," in Computational Intelligence and Information Technology, 2013. CIIT 2013. Third International Conference on, 2013, pp. 503-507.
  12. S. Viriyavisuthisakul, P. Sanguansat, P. Charnkeitkong, and C. Haruechaiyasak, "A comparison of similarity measures for online social media Thai text classification," in 2015 12th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), 2015, pp. 1-6.