참고문헌
- Choi, H. J., Hwang, M. J., Kim, D. W. and Joo, W. H. 2013. Characterization of Organic Solvent Stable Lipase from Pseudomonas sp. BCNU 106. J. Life Sci. 26, 603-607.
- Choi, H. J., Seo, J. Y., Hwang, S. M., Lee, Y. I., Jeong, Y. K., Moon, J. Y. and Joo, W. H. 2013. Isolation and characterization of BTEX tolerant and degrading Pseudomonas putida BCNU 106. Biotechnol. Bioprocess Eng. 18, 1000-1007. https://doi.org/10.1007/s12257-012-0860-1
- Crowe, J. H., Hoekstra, F. A. and Crowe, L. M. 1992. Anhydrobiosis. Annu. Rev. Physiol. 54, 579-599. https://doi.org/10.1146/annurev.ph.54.030192.003051
- Csonka, L. N. 1989. Physiological and genetic responses of bacteria to osmotic stress. Microbiol. Rev. 53, 121-147.
- Giaver, H. M., Styrvold, O. B., Kaasen, I. and Stram, A. R. 1988. Biochemical and genetic characterization of osmoregulatory trehalose synthesis in Escherichia coli. J. Bacteriol. 170, 2841-2849. https://doi.org/10.1128/jb.170.6.2841-2849.1988
- Hasan, F., Shah, A. A. and Hameed, A. 2006. Industrial applications of microbial lipases. Enzyme Microb. Technol. 39, 235-251. https://doi.org/10.1016/j.enzmictec.2005.10.016
- Heipieper, H. J., Neumann, G., Cornelissen, S. and Meinhardt, F. 2007. Solvent-tolerant bacteria for biotransformations in two-phase fermentation systems. Appl. Microbiol. Biotechnol. 74, 961-973. https://doi.org/10.1007/s00253-006-0833-4
- Jaeger, K. E. and Eggert, T. 2004. Enantioselective biocatalysis optimized by directed evolution. Curr. Opin. Chem. Biol. 15, 305-313.
- Kumar, A., Dhar, K., Kanwar, S. S. and Arora, P. K. 2016. Lipase catalysis in organic solvents: advantages and applications. Biol. Proced. Online 18, 2-11. https://doi.org/10.1186/s12575-016-0033-2
- Lim, B. R., Choi, H. J., Kwon, G. S. and Joo, W. H. 2015. Enhancement of solvent tolerance in Pseudomonas sp. BCNU 106 with trehalose. Lett. Appl. Microbiol. 61, 607-612. https://doi.org/10.1111/lam.12504
- Lima, V. M. G., Krieger, N., Mitchell, D. A., Baratti, J. C., Filippis, I. and Fontana, J. D. 2004. Evaluation of the potential for use in biocatalysis of a lipase from a wild strain of Bacillus megaterium. J. Mol. Catal. B Enzym. 31, 53-61. https://doi.org/10.1016/j.molcatb.2004.07.005
- Ogino, H., Yasui, K., Shiotani, T., Ishihara, T. and Ishikawa, H. 1995. Organic solvent-tolerant bacterium which secretes an organic solvent-stable proteolytic enzyme. Appl. Environ. Microbiol. 61, 4258-4262.
- Paje, M. L., Neilan, B. A. and Couperwhite, I. A. 1997. Rhodococcus species that thrives on medium saturated with liquid benzene. Microbiology 143, 2975-2981. https://doi.org/10.1099/00221287-143-9-2975
- Purvis, J. E., Yomano, L. P. and Ingram, L. O. 2005. Enhanced trehalose production improves growth of Escherichia coli under osmotic stress. Appl. Environ. Microbiol. 71, 3761-3769. https://doi.org/10.1128/AEM.71.7.3761-3769.2005
- Rahman, R. N., Baharum, S. N., Basri, M. and Salleh, A. B. 2005. High-yield purification of an organic solvent-tolerant lipase from Pseudomonas sp. strain S5. Anal. Biochem. 341, 267-274. https://doi.org/10.1016/j.ab.2005.03.006
-
Schutte, M. and Fetzner, S. 2007. EstA from Arthrobacter nitroguajacolicus Ru61a, a thermo-and solvent-tolerant carboxylesterase related to class C
${\beta}$ -lactamases. Curr. Microbiol. 54, 230-236. https://doi.org/10.1007/s00284-006-0438-2 - Sharma, S. and Kanwar, S. S. 2014. Organic solvent tolerant lipases and applications. Sci. World J. 2014, 625258.
- Schiraldi, C., Lernia, I. D. and Rosa, M. D. 2002. Trehalose production: exploiting novel approaches. Trends Biotechnol. 20, 420-425. https://doi.org/10.1016/S0167-7799(02)02041-3
- Vieille, C. and Zeikus, G. J. 2001. Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiol. Mol. Biol. Rev. 65, 1-43. https://doi.org/10.1128/MMBR.65.1.1-43.2001