DOI QR코드

DOI QR Code

Pseudomonas sp. GP32가 생산하는 생물고분자응집제 Biopol32의 응집특성

Flocculating Properties of Bioflocculant Biopol32 from Pseudomonas sp. GP32

  • 이현돈 (국립경남과학기술대학교 환경공학과) ;
  • 오나라 (셀바이오스 기술연구소) ;
  • 이명은 (국립경남과학기술대학교 환경공학과) ;
  • 서현효 (국립경남과학기술대학교 환경공학과)
  • Lee, Hyun Don (Department of Environmental Engineering, Gyeongnam National University of Science and Technology) ;
  • Oh, Nara (Research and Development center, Cellbios) ;
  • Lee, Muyeong Eun (Department of Environmental Engineering, Gyeongnam National University of Science and Technology) ;
  • Suh, Hyun Hyo (Department of Environmental Engineering, Gyeongnam National University of Science and Technology)
  • 투고 : 2017.07.21
  • 심사 : 2017.08.15
  • 발행 : 2017.08.30

초록

Pseudomonas sp. GP32가 생산하는 생물고분자응집제 Biopol32의 실제 산업폐수에서의 적용을 위하여 생물고분자 Biopol32의 응집특성을 조사하였다. Biopol32의 응집물질은 polysaccharide로 확인되었다. 음이온성 응집제들은 응집효율을 높이기 위하여 보조응집제로 counter ion을 사용하고 있다. Biopol32의 응집활성은 보조응집제로 $Ca^{2+}$, $Al^{3+}$와 같은 양이온을 첨가 하였을 때 크게 증가하였으며, 보조응집제로서 7.0 mM $CaCl_2{\cdot}2H_2O$을 첨가하였을 때 Biopol32의 응집활성이 가장 높게 나타났다. Kaolin 현탁액에 Biopol32를 1.5 mg/l의 농도로 첨가하였을 때 가장 높은 응집활성을 보였다. Biopol32의 pH와 온도에 따른 응집활성은 현재 폐수처리 현장에서 상업적으로 이용되고 있는 음이온성 유기합성고분자응집제 polyacrylamide와 Zoogloea ramigera로부터 생산된 생물고분자응집제 zooglan과 응집활성을 비교하였다. Biopol32의 응집활성은 pH 5.0에서 8.0의 넓은 범위의 pH에서 높은 응집활성을 보였으며, 또한 온도의 영향에서는 $60^{\circ}C$에서 가장 높은 응집활성을 나타내었으나, $70^{\circ}C$ 이상의 온도에서는 응집활성이 급격히 감소하는 것으로 나타났다. Jar fermentor를 이용한 batch culture를 통하여 Biopol32의 응집활성과 전하밀도와의 관계를 조사하였다. 음이온성 전하밀도와 겉보기 점도가 높을수록 Biopol32의 응집활성이 높아져, Biopol32의 응집활성과 겉보기점도는 Biopol32의 전하밀도와 밀접한 관계가 있는 것으로 나타났다.

The flocculating properties of bioflocculant Biopol32 produced by Pseudomonas sp. GP32 were investigated for application in industrial wastewater treatment. The major flocculating substance of bioflocculant Biopol32 was identified as polysaccharide. Many anionic flocculants need a counter ion to induce higher flocculating activity. The flocculating activity of bioflocculant Biopol32 was markedly increased by the addition of cationic ions ($Ca^{2+}$, $Al^{3+}$). The flocculating activity of bioflocculant Biopol32 was the most effective when 7.0 mM $CaCl_2{\cdot}2H_2O$ as coflocculant was added. The flocculating activity on the effect of pH and the temperature of the bioflocculant Biopol32 was compared with anionic commercial flocculant (polyacrylamide) and bioflocculant (zooglan from Zoogloea ramigera). In kaolin suspension, the highest flocculating activity was obtained at the bioflocculant Biopol32 concentration of 1.5 mg/l. A high flocculating activity was observed in the pH range of 5.0 to 8.0. The flocculating activity of bioflocculant Biopol32 was sustained up to $60^{\circ}C$, but decreased rapidly at over $70^{\circ}C$. In the batch culture, the charge density of bioflocculant Biopol32 was compared with flocculating activity. The larger the anionic charge density and apparent viscosity of bioflocculant Biopol32, the higher the flocculating activity. Therefore, we confirmed that the flocculating activity and apparent viscosity of bioflocculant Biopol32 was closely related to the charge density of bioflocculant Biopol32.

키워드

참고문헌

  1. Chaplin, M. F. and Kennedy, J. J. 1968. Phenol-sulfuric acid assay. pp. 2. In: Chaplin, M. F. and Kennedy, J. F. (eds.), Carbohydrate analysis : A practical approach. IRL Press, Wahington, DC., U.S.A.
  2. Dearfield, K. L. and Ambermathy, C. O. 1988. Acrylamide its metabolism, developmental and reproductive effects, genotoxicity, and carcinogenicity. Mutant Res. 195, 45-47.
  3. Fridman, B. A. and Dugan, P. R. 1968. Identification of Zoogloea sp. and the relationship to Zoogloeal matrix and floc formation. J. Bacteial. 95. 1903-1909.
  4. Gutcho, S. 1977. Waste treatment with polyectrolytes and other flocculants, pp.1-37. Noyes Data Corp., Park Ridge, New Jersey.
  5. Herrington, T. M., Midmore, B. R. and Watts, J. C. 1993. Flocculation of kaolin suspensions by polyelectrolytes. pp. 162-182. In colloid-polymer interactions-particulate, Amphiphilic, and Biological Surfaces. Edited by Dubin, P and P. Tong. American Chemical Society.
  6. Korea Standard Association. 1992. Method of Charge Density Measurement. Colloidal titrimetrics. KSM 0001.
  7. Kurane, R., Hatamochi, K., Kakuno, T. Kiyohara, M., Hirano, M. and Taniguchi, Y. 1994. Production of a bioflocculant by Rhodococcus erythropolis S-1 grown on alcohols. Biosci. Biotech. Biochem. 58, 428-429. https://doi.org/10.1271/bbb.58.428
  8. Kurane, R. and Matsuyama, H. 1994. Production of a bioflocculant by mixed culture. Biosci. Biotech. Biochem. 58, 1589-1594. https://doi.org/10.1271/bbb.58.1589
  9. Kurane, R., Takeda, K. and Suzuki, T. 1986. Screening for and characteristics of microbial flocculants. Agr. Biol. Chem. 50, 2301-2307.
  10. Kwon, G. S., Moon, S. H., Hong, S. D., Lee, M. H. Mheen, T. I., Oh, H. M. and Yoon, B. D. 1996. Rheological properties of extracellular polysaccharide, pestan produced by Pestalopsis sp. Biotechnol. Lett. 18, 1459-1464. https://doi.org/10.1007/BF00129355
  11. Levine, S. and Friesen, W. I. 1987. Flocculation of colloid particles by water-soluble polymers. pp. 3-20. In flocculation in biotechnology and separation systems. Process Technology Proceedings, 4.Edited by Attia, Y. A. Elsevier science publishing company.
  12. McNeil, B. and Kristanian, B. 1989. Temperature effect on pulluan formation by Aureobasidium pullulans in stirred tanks. Enzyme Microb. Technol. 12, 521-526.
  13. Nakamura, J., Miyahiro, S. and Hirose, Y. 1976. Conditions for production of microbial cell flocculant by Aspergillus sojae AJ7002. Agric. Biol. Chem. 40, 1341-1347.
  14. Nakamura, J., Miyahiro, S. and Hirose, Y. 1976. Screening, isolation and some properties of microbial cell flocculants. Agric. Biol. Chem. 40, 377-383.
  15. Lee, M. E., Lee, H. D. and Suh, H. H. 2015. Production and characterization of extracellular polysaccharide produced by Pseudomonas sp. GP32. J. Life Sci. 25, 1027-1035. https://doi.org/10.5352/JLS.2015.25.9.1027
  16. Fitzerald, C. L., Clemens, M. M. and Relilly, P. B. 1970. Coagulants for wastewater treatment. Chem. Eng. Prog. 66, 36-40.
  17. Takagi, H. and Kadowaki, K. 1985. Flocculant production by Pacilomyces sp. taxonomic studies and culture conditions for production. Agr. Biol. Chem. 49, 3151-3157.
  18. Toeda, K. and Kurane, R. 1991, Microbial flocculant from Alcaligenes cupidus KT201. Agr. Biol. Chem. 55, 2793-2799.
  19. Whistler, R. L. 1993. Chitin. pp. 601-618. In Industrial gums-polysaccharides and their derivatives. Edited by Whistler, R. L. and J. N. BeMiller. Academic press.
  20. Yokoi, H., Natsuda, O., Hirose, J., Hayashi, S. and Takasaki, Y. 1995. Characteristics of a biopolymer flocculant produced by Bacillus sp. PY-90. J. Ferment. Bioeng. 79, 378-380. https://doi.org/10.1016/0922-338X(95)94000-H
  21. Zajic, J. E. and Knettig, E. 1970. Flocculants from paraffinic hydrocarbons developments in industrial microbiology, pp87-98. American Institute of Biological Science, Washington DC.