DOI QR코드

DOI QR Code

Anti-obesity Effect of Salsola collina Ethanol Extract

솔장다리 추출물의 항비만 효과

  • Jin, Kyong-Suk (Blue-Bio Industry Regional Innovation Center, Dong-Eui University) ;
  • Lee, Su Hyeon (Blue-Bio Industry Regional Innovation Center, Dong-Eui University) ;
  • Kwon, Hyun Ju (Blue-Bio Industry Regional Innovation Center, Dong-Eui University) ;
  • Kim, Byung Woo (Blue-Bio Industry Regional Innovation Center, Dong-Eui University)
  • 진경숙 (동의대학교 블루바이오소재개발 및 실용화 지원센터) ;
  • 이수현 (동의대학교 블루바이오소재개발 및 실용화 지원센터) ;
  • 권현주 (동의대학교 블루바이오소재개발 및 실용화 지원센터) ;
  • 김병우 (동의대학교 블루바이오소재개발 및 실용화 지원센터)
  • Received : 2017.01.05
  • Accepted : 2017.04.14
  • Published : 2017.08.30

Abstract

Salsola collina (S. collina) is an annual plant widely distributed in drought and semi-drought areas, which has been used for a long time as a kind of folk remedy in traditional Chinese medicine for the treatment of hypertension. Previously, the anti-oxidative and anti-cancer activities of S. collina were elucidated in our research group. In this study, the anti-obesity activities of S. collina ethanol extract (SCEE) were evaluated using a pancreatic lipase enzyme inhibition assay and cell culture model. The results showed that SCEE effectively suppressed pancreatic lipase enzyme activity in a dose-dependent manner. Furthermore, SCEE significantly suppressed adipocyte differentiation, lipid accumulation, and triglyceride (TG) content, and triggered lipolysis on insulin, dexamethasone, and 3-isobutyl-l-methylxanthine-treated 3T3-L1 preadipocytes in a dose-dependent manner without cytotoxicity. Its anti-obesity effect was modulated by cytidine-cytidine-adenosine-adenosine-thymidine (CCAAT)/enhancer binding proteins ${\alpha}$ ($C/EBP{\alpha}$), $C/EBP{\beta}$, and the peroxisome proliferator-activated receptor ${\gamma}$ ($PPAR{\gamma}$) gene, as well as protein expressions. Taken together, these results offer the important new insight that S. collina possesses anti-obesity properties, such as pancreatic lipase inhibition and anti-adipogenic and lipolysis effects through the modulation of their upstream signaling pathway. It could become a promising source in the field of nutraceuticals, and the identification of active compounds that confer the biological activities of SCEE may be needed.

솔장다리(S. collina)는 건조한 대지에 널리 분포되어 있는 한해살이 식물로 한방에서는 고혈압의 치료에 사용되어왔으며 선행연구를 통해 솔장다리가 보유한 항산화 및 항암 활성을 밝힌바 있다. 본 연구에서는 솔장다리 에탄올 추출물(SCEE)의 항비만 활성을 췌장 lipase 효소 활성 억제능과 세포실험계를 이용하여 분석하였다. 그 결과 SCEE는 농도 의존적으로 lipase 효소 활성을 유의적으로 억제시켰으며, 3T3-L1 preadipocyte를 이용하여 지방세포 분화 및 지방생성, 생성된 지방의 분해에 미치는 영향을 분석한 결과 지방세포 분화, 세포 내 지방 축적, TG 함량 등을 독성 없이 농도의존적으로 억제하였고, 지방세포 내 중성지방을 유의적으로 분해시키는 것으로 나타났다. 이러한 솔장다리의 지방세포 분화 억제능은 핵심 작용 인자인 $C/EBP{\alpha}$, $C/EBP{\beta}$, 그리고 $PPAR{\gamma}$의 유전자 및 단백질 발현조절에서 기인함을 확인하였다. 이러한 결과는 솔장다리가 보유한 췌장 lipase 활성 저해능, 지방세포 분화 억제능, 지방세포 내 지방 분해능, 지방분화관련 인자 신호전달기전 조절을 통한 항비만 활성을 처음으로 밝혀낸 것이며 추후 계속적인 연구를 통해 활성 물질의 규명이 필요할 것으로 판단된다.

Keywords

References

  1. Attie, A. D. and Scherer, P. E. 2009. Adipocyte metabolism and obesity. J. Lipid Res. 50, 395-399. https://doi.org/10.1194/jlr.R800057-JLR200
  2. Bae, C. R., Kwon, D. Y. and Cha, Y. S. 2013. Anti-obesity effects of salted and unsalted doenjang supplementation in C57BL/6J mice fed with high fat diet. J. Kor. Soc. Food Sci. Nutr. 42, 1036-1042. https://doi.org/10.3746/jkfn.2013.42.7.1036
  3. Cao, Z., Umek, R. M. and McKnight, S. L. 1991. Regulated expression of three C/EBP isoforms during adipose conversion of 3T3-L1 cells. Genes Dev. 5, 1538-1552. https://doi.org/10.1101/gad.5.9.1538
  4. Chen, H. C. and Farese, R. V. Jr. 2005. Inhibition of triglyceride synthesis as a treatment strategy for obesity: lessons from DGAT1-deficient mice. Arterioscler. Thromb. Vasc. Biol. 25, 482-486. https://doi.org/10.1161/01.ATV.0000151874.81059.ad
  5. Despres, J. P. and Lemieux, I. 2006. Abdominal obesity and metabolic syndrome. Nature 444, 881-887. https://doi.org/10.1038/nature05488
  6. Flier, J. S. and Maratos Flier, E. 1998. Obesity and the hypothalamus: novel peptides for new pathways. Cell 92, 437-440. https://doi.org/10.1016/S0092-8674(00)80937-X
  7. Gesta, S., Tseng, Y. H. and Kahn, C. R. 2007. Developmental origin of fat: Tracking obesity to its source. Cell 131, 242-256. https://doi.org/10.1016/j.cell.2007.10.004
  8. Gregoire, F. M., Smas, C. M. and Sul, H. S. 1998. Understanding adipocyte differentiation. Physiol. Rev. 78, 783-809. https://doi.org/10.1152/physrev.1998.78.3.783
  9. Gupta, R., Rathi, P., Gupta, N. and Bradoo, S. 2003. Lipase assays for conventional and molecular screening: an overview. Biotechnol. Appl. Biochem. 37, 63-71. https://doi.org/10.1042/BA20020059
  10. Heck, A. M., Yanovski, J. A. and Calis, K. A. 2000. Orlistat, a new lipase inhibitor for the management of obesity. Pharmacotherapy 20, 270-279. https://doi.org/10.1592/phco.20.4.270.34882
  11. Hotamisligil, G. S. 2006. Inflammation and metabolic disorders. Nature 444, 860-867. https://doi.org/10.1038/nature05485
  12. Kim, S. H., Kim, J. Y., Ryu, K. A. and Sohn, C. M. 2007. Evaluation of the dietary diversity and nutrient intakes in obese adults. Kor. J. Community Nutr. 12, 583-591.
  13. Kim, E. J., Kim, G. Y., Kim, Y. M., Choi, K. H. and Jang, S. J. 2009. Anti-obesity effect of mulberry leaves extraction in obese rats high-fat diet. Kor. J. Ori. Physiol. Pathol. 23, 831-836.
  14. Liu, F., Kim, J., Li, Y., Liu, X., Li, J. and Chen, X. 2001. An extract of Lagerstroemia speciosa L. has insulin-like uptake-stimulatory and adipocyte differentiation-inhibitory activities in 3T3-L1 cells. J. Nutr. 131, 2242-2247. https://doi.org/10.1093/jn/131.9.2242
  15. Morrison, R. F. and Farmer, S. R. 2000. Hormonal signaling and transcriptional control of adipocyte differentiation. J. Nutr. 130, 3116-3121. https://doi.org/10.1093/jn/130.12.3116S
  16. Ntambi, J. M. and Kim, Y. C. 2000. Adipocyte differentiation and gene expression. J. Nutr. 130, 3122-3126. https://doi.org/10.1093/jn/130.12.3122S
  17. Oh, Y. N., Jin, S., Park, H. J., Kwon, H. J. and Kim, B. W. 2014. Anti-oxidative and anti-cancer activities by cell cycle regulation of Salsola collina extract. Kor. J. Microbiol. Biotechnol. 42, 73-81. https://doi.org/10.4014/kjmb.1311.11009
  18. Park, J. A., Park, C., Han, M. H., Kim, B. W., Chung, Y. H. and Choi, Y. H. 2011. Inhibition of adipocyte differentiation and adipogenesis by aged black garlic extracts in 3T3-L1 preadipocytes. J. Life Sci. 21, 720-728. https://doi.org/10.5352/JLS.2011.21.5.720
  19. Rosen, E. D. and Macdougald, O. A. 2006. Adipocyte differentiation from the inside out. Nat. Rev. Mol. Cell Biol. 7, 885-896. https://doi.org/10.1038/nrm2066
  20. World Health Organization 2016. Obesity and overweight. Fact sheet. Available at: http://www.who.int/mediacentre/fs311/en/. Updated June 2016.
  21. Wu, Z., Bucher, N. L. and Farmer, S. R. 1996. Induction of peroxisome proliferator-activated receptor gamma during the conversion of 3T3 fibroblasts into adipocytes is mediated by C/EBP beta, C/EBP delta, and glucocorticoids. Mol. Cell Biol. 16, 4128-4136. https://doi.org/10.1128/MCB.16.8.4128
  22. Wu, Z., Xie, Y., Bucher, N. L. and Farmer, S. R. 1995. Conditional ectopic expression of C/EBP beta in NIH-3T3 cells induces PPAR gamma and stimulates adipogenesis. Genes Dev. 9, 2350-2363. https://doi.org/10.1101/gad.9.19.2350
  23. Yeh, W. C., Cao, Z., Classon, M. and McKnight, S. L. 1995. Cascade regulation of terminal adipocyte differentiation by three members of the C/EBP family of leucine zipper proteins. Genes Dev. 9, 168-181. https://doi.org/10.1101/gad.9.2.168
  24. Zhang, J. W., Klemm, D. J., Vinson, C. and Lane, M. D. 2004. Role of CREB in transcriptional regulation of CCAAT/enhancer-binding protein beta gene during adipogenesis. J. Biol. Chem. 279, 4471-4478. https://doi.org/10.1074/jbc.M311327200