DOI QR코드

DOI QR Code

NQO1 (NAD(P)H:quinone oxidoreductase 1)에 의한 대식세포 활성화 억제

Inhibitory Effect of NAD(P)H:Quinone Oxidoreductase 1 on the Activation of Macrophages

  • 훙지 (대진대학교 자연과학대학 생명화학부 생명과학전공) ;
  • 장펑 (대진대학교 자연과학대학 생명화학부 생명과학전공) ;
  • 윤이나 (대진대학교 자연과학대학 생명화학부 생명과학전공) ;
  • 김호 (대진대학교 자연과학대학 생명화학부 생명과학전공)
  • Hong, Ji (Division of Life Science and Chemistry, College of Natural Science, Daejin University) ;
  • Zhang, Peng (Division of Life Science and Chemistry, College of Natural Science, Daejin University) ;
  • Yoon, I Na (Division of Life Science and Chemistry, College of Natural Science, Daejin University) ;
  • Kim, Ho (Division of Life Science and Chemistry, College of Natural Science, Daejin University)
  • 투고 : 2017.03.22
  • 심사 : 2017.10.16
  • 발행 : 2017.08.30

초록

본 연구는 대식세포 활성화 과정에서 NQO1의 역할을 확인하는 것이다. 대식세포의 활성화 정도는 배양액으로 분비하는 IL-6와 $TNF-{\alpha}$ 양을 측정하여 평가하였다. 먼저 NQO1 WT 생쥐와 NQO1 KO 생쥐에서 각각 분리한 복강대식세포의 활성화 정도를 비교해 보았다. 특이하게도 NQO1 KO 복강대식세포가 NQO1 WT에 비해서 더 높게 활성화되어 있었다. 또한 일반 생쥐의 복강대식세포에 NQO1 억제제(dicumarol)을 처치한 경우에도 강한 활성이 유도됨을 확인하였다. Dicumarol을 처치한 RAW264.7 (대식세포주)에 서도 강한 활성화가 관찰되었다. 이는 NQO1이 대식세포의 활성화 과정을 억제하는 경로와 연관되어 있음을 보여준다. 더욱이 dicumarol을 처치하여 NQO1의 기능을 억제시킨 다양한 대식세포에서 $I{\kappa}B$ 단백질이 유의하게 감소한다는 사실을 확인하였다. 대식세포 활성화 과정을 매개하는 주요 신호분자가 $NF{\kappa}B$이며 이 분자에 대한 억제자가 $I{\kappa}B$라는 사실들을 감안할 때, NQO1의 기능이 $I{\kappa}B$ 단백질변성 억제와 연관되어 있으며 이를 통해 대식세포의 활성화를 차단했을 가능성이 있다. 본 연구는 향 후 대식세포 활성화 과정을 조절하는 NQO1의 역할을 규명하는데 있어서 중요한 기초 결과가 될 것이다.

We previously reported that NAD(P)H:quinone oxidoreductase 1 (NQO1)-knockout (KO) mice exhibited spontaneous inflammation in the gut. We also found that NQO1-KO mice showed highly increased inflammatory responses compared with NQO1-WT control mice when subjected to DSS-induced experimental colitis. In a Clostridium difficile toxin-induced mouse enteritis model, NQO1-KO mice were also sensitive compared with NQO1-WT mice. Moreover, numerous studies have shown that NQO1 is functionally associated with immune regulation. Here, we assessed whether NQO1 defects can alter macrophage activation. We found that peritoneal macrophages isolated from NQO1-KO mice produced more IL-6 and $TNF-{\alpha}$ than those isolated from NQO1-WT mice. Moreover, the dicumarol-induced inhibition of NQO1 significantly increased IL-6 and $TNF-{\alpha}$ production in peritoneal macrophages isolated from NQO1-WT mice, as well as in the cultured mouse macrophage cell line, RAW264.7. These results indicate that NQO1 may negatively regulate the activation of macrophages. Knockout or chemical inhibition of NQO1 markedly reduced the expression of $I{\kappa}B$ (inhibitor of $NF{\kappa}B$) in both mouse peritoneal macrophages and RAW264.7 cells. Finally, RAW264.7 cells treated with dicumarol exhibited morphological changes reflecting macrophage activation. Our results suggest that NQO1 may suppress the $NF{\kappa}B$ pathways in macrophages, thereby suppressing the activation of these cells. Thus, immunosuppressive activity may be among the many possible functions of NQO1.

키워드

참고문헌

  1. Berger, F., Ramirez-Hernandez, M. H. and Ziegler, M. 2004. The new life of a centenarian: signalling functions of NAD(P). Trends Biochem. Sci. 29, 111-118. https://doi.org/10.1016/j.tibs.2004.01.007
  2. Diao, Y., Xin, Y., Zhou, Y., Li, N., Pan, X., Qi, S., Qi, Z., Xu, Y., Luo, L., Wan, H., Lan, L. and Yin, Z. Extracellular polysaccharide from Bacillus sp. strain LBP32 prevents LPS-induced inflammation in RAW 264.7 macrophages by inhibiting NF-kappaB and MAPKs activation and ROS production. Int. Immunopharmacol. 18, 12-19.
  3. Hwang, J. H., Kim, D. W., Jo, E. J., Kim, Y. K., Jo, Y. S., Park, J. H., Yoo, S. K., Park, M. K., Kwak, T. H., Kho, Y. L., Han, J., Choi, H. S., Lee, S. H., Kim, J. M., Lee, I., Kyung, T., Jang, C., Chung, J., Kweon, G. R. and Shong, M. 2009. Pharmacological stimulation of NADH oxidation ameliorates obesity and related phenotypes in mice. Diabetes 58, 965-974. https://doi.org/10.2337/db08-1183
  4. Iskander, K., Li, J., Han, S., Zheng, B. and Jaiswal, A. K. 2006. NQO1 and NQO2 regulation of humoral immunity and autoimmunity. J. Biol. Chem. 281, 30917-30924. https://doi.org/10.1074/jbc.M605809200
  5. Jaiswal, A. K. 2000. Regulation of genes encoding NAD(P) H:quinone oxidoreductases. Free Radic. Biol. Med. 29, 254-262. https://doi.org/10.1016/S0891-5849(00)00306-3
  6. Kang, J., Tae, N., Min, B. S., Choe, J. and Lee, J. H. 2012. Malabaricone C suppresses lipopolysaccharide-induced inflammatory responses via inhibiting ROS-mediated Akt/IKK/NF-kappaB signaling in murine macrophages. Int. Immunopharmacol. 14, 302-310. https://doi.org/10.1016/j.intimp.2012.08.006
  7. Kim, H., Kokkotou, E., Na, X., Rhee, S. H., Moyer, M. P., Pothoulakis, C. and Lamont, J. T. 2005. Clostridium difficile toxin A-induced colonocyte apoptosis involves p53-dependent p21(WAF1/CIP1) induction via p38 mitogen-activated protein kinase. Gastroenterology 129, 1875-1888. https://doi.org/10.1053/j.gastro.2005.09.011
  8. Kim, H. J. and Nel, A. E. 2005. The role of phase II antioxidant enzymes in protecting memory T cells from spontaneous apoptosis in young and old mice. J. Immunol. 175, 2948-2959. https://doi.org/10.4049/jimmunol.175.5.2948
  9. Konigs, V., Jennings, R., Vogl, T., Horsthemke, M., Bachg, A. C., Xu, Y., Grobe, K., Brakebusch, C., Schwab, A., Bahler, M., Knaus, U. G. and Hanley, P. J. Mouse macrophages completely lacking Rho subfamily GTPases (RhoA, RhoB, and RhoC) have severe lamellipodial retraction defects, but robust chemotactic navigation and altered motility. J. Biol. Chem. 289, 30772-30784.
  10. Lawrence, T., Bebien, M., Liu, G. Y., Nizet, V. and Karin, M. 2005. IKKalpha limits macrophage NF-kappaB activation and contributes to the resolution of inflammation. Nature 434, 1138-1143. https://doi.org/10.1038/nature03491
  11. Long, D. J., Iskander, K., Gaikwad, A., Arin, M., Roop, D. R., Knox, R., Barrios, R. and Jaiswal, A. K. 2002. Disruption of dihydronicotinamide riboside:quinone oxidoreductase 2 (NQO2) leads to myeloid hyperplasia of bone marrow and decreased sensitivity to menadione toxicity. J. Biol. Chem. 277, 46131-46139. https://doi.org/10.1074/jbc.M208675200
  12. McWhorter, F. Y., Wang, T., Nguyen, P., Chung, T. and Liu, W. F. 2013. Modulation of macrophage phenotype by cell shape. Proc. Natl. Acad Sci. USA 110, 17253-17258. https://doi.org/10.1073/pnas.1308887110
  13. Nam, H. J., Oh, A. R., Nam, S. T., Kang, J. K., Chang, J. S., Kim, D. H., Lee, J. H., Hwang, J. S., Shong, K. E., Park, M. J., Seok, H. and Kim, H. 2012. The insect peptide CopA3 inhibits lipopolysaccharide-induced macrophage activation. J. Pept. Sci. 18, 650-656. https://doi.org/10.1002/psc.2437
  14. Nam, S. T., Hwang, J. H., Kim, D. H., Park, M. J., Lee, I. H., Nam, H. J., Kang, J. K., Kim, S. K., Hwang, J. S., Chung, H. K., Shong, M., Lee, C. H. and Kim, H. 2014. Role of NADH: quinone oxidoreductase-1 in the tight junctions of colonic epithelial cells. BMB. Rep. 47, 494-499. https://doi.org/10.5483/BMBRep.2014.47.9.196
  15. Nam, S. T., Seok, H., Kim, D. H., Nam, H. J., Kang, J. K., Eom, J. H., Lee, M. B., Kim, S. K., Park, M. J., Chang, J. S., Ha, E. M., Shong, K. E., Hwang, J. S. and Kim, H. 2012. Clostridium difficile toxin A inhibits erythropoietin receptor-mediated colonocyte focal adhesion through inactivation of Janus Kinase-2. J. Microbiol. Biotechnol. 22, 1629-1635. https://doi.org/10.4014/jmb.1207.07063
  16. Oh, G. S., Kim, H. J., Choi, J. H., Shen, A., Choe, S. K., Karna, A., Lee, S. H., Jo, H. J., Yang, S. H., Kwak, T. H., Lee, C. H., Park, R. and So, H. S. 2014. Pharmacological activation of NQO1 increases NAD levels and attenuates cisplatin-mediated acute kidney injury in mice. Kidney Int. 85, 547-560 https://doi.org/10.1038/ki.2013.330
  17. Palming, J., Sjoholm, K., Jernas, M., Lystig, T. C., Gummesson, A., Romeo, S., Lonn, L., Lonn, M., Carlsson, B. and Carlsson, L. M. 2007. The expression of NAD(P)H:quinone oxidoreductase 1 is high in human adipose tissue, reduced by weight loss, and correlates with adiposity, insulin sensitivity, and markers of liver dysfunction. J. Clin. Endocrinol. Metab. 92, 2346-2352. https://doi.org/10.1210/jc.2006-2476
  18. Park, J. B. 2003. Phagocytosis induces superoxide formation and apoptosis in macrophages. Exp. Mol. Med. 35, 325-335. https://doi.org/10.1038/emm.2003.44
  19. Pollak, N., Dolle, C. and Ziegler, M. 2007. The power to reduce: pyridine nucleotides--small molecules with a multitude of functions. Biochem. J. 402, 205-218. https://doi.org/10.1042/BJ20061638
  20. Radjendirane, V., Joseph, P., Lee, Y. H., Kimura, S., Klein-Szanto, A. J., Gonzalez, F. J. and Jaiswal, A. K. 1998. Disruption of the DT diaphorase (NQO1) gene in mice leads to increased menadione toxicity. J. Biol. Chem. 273, 7382-7389. https://doi.org/10.1074/jbc.273.13.7382
  21. Rushworth, S. A., MacEwan, D. J. and O'Connell, M. A. 2008. Lipopolysaccharide-induced expression of NAD(P)H: quinone oxidoreductase 1 and heme oxygenase-1 protects against excessive inflammatory responses in human monocytes. J. Immunol. 181, 6730-6737. https://doi.org/10.4049/jimmunol.181.10.6730
  22. Siegel, D., Anwar, A., Winski, S. L., Kepa, J. K., Zolman, K. L. and Ross, D. 2001. Rapid polyubiquitination and proteasomal degradation of a mutant form of NAD(P)H:quinone oxidoreductase 1. Mol. Pharmacol. 59, 263-268. https://doi.org/10.1124/mol.59.2.263
  23. Siegel, D., Yan, C. and Ross, D. 2012. NAD(P)H:quinone oxidoreductase 1 (NQO1) in the sensitivity and resistance to antitumor quinones. Biochem. Pharmacol. 83, 1033-1040. https://doi.org/10.1016/j.bcp.2011.12.017
  24. Stanley, A., Thompson, K., Hynes, A., Brakebusch, C. and Quondamatteo, F. 2014. NADPH oxidase complex-derived reactive oxygen species, the actin cytoskeleton, and Rho GTPases in cell migration. Antioxid. Redox Signal. 20, 2026-2042. https://doi.org/10.1089/ars.2013.5713
  25. Traver, R. D., Horikoshi, T., Danenberg, K. D., Stadlbauer, T. H., Danenberg, P. V., Ross, D. and Gibson, N. W. 1992. NAD(P)H:quinone oxidoreductase gene expression in human colon carcinoma cells: characterization of a mutation which modulates DT-diaphorase activity and mitomycin sensitivity. Cancer Res. 52, 797-802.
  26. van Wetering, S., van Buul, J. D., Quik, S., Mul, F. P., Anthony, E. C., ten Klooster, J. P. Collard, J. G. and Hordijk, P. L. 2002. Reactive oxygen species mediate Rac-induced loss of cell-cell adhesion in primary human endothelial cells. J. Cell Sci. 115, 1837-1846.
  27. Yang, H. L., Lin, S. W., Lee, C. C., Lin, K. Y., Liao, C. H., Yang, T. Y., Wang, H. M., Huang, H. C., Wu, C. R. and Hseu, Y. C. 2015. Induction of Nrf2-mediated genes by Antrodia salmonea inhibits ROS generation and inflammatory effects in lipopolysaccharide-stimulated RAW264.7 macrophages. Food Funct. 6, 230-241.
  28. Zhu, H., Jia, Z., Zhang, L., Yamamoto, M., Misra, H. P., Trush, M. A. and Li, Y. 2008. Antioxidants and phase 2 enzymes in macrophages: regulation by Nrf2 signaling and protection against oxidative and electrophilic stress. Exp. Biol. Med. (Maywood) 233, 463-474. https://doi.org/10.3181/0711-RM-304