References
- Apparailly, F. and Combarnous, Y. 1994. Role of sialic acid residues in the in vitro superactivity of human choriogonadotropin (hCG) in rat Leydig cells. Biochim. Biophys. Acta 1224, 559-569. https://doi.org/10.1016/0167-4889(94)90294-1
- Ascoli, M., Fanelli, F. and Segaloff, D. L. 2002.The lutropin/choriogonadotropin receptor, a 2002 perspective. Endocr. Rev. 23, 141-174. https://doi.org/10.1210/edrv.23.2.0462
- Boeta, M. and Zarco, L. 2012. Luteogenic and luteotropic effects of eCG during pregnancy in the mare. Anim. Reprod. Sci. 130, 57-62. https://doi.org/10.1016/j.anireprosci.2012.01.001
- Brule, C., Perzo, N., Joubert, J. E., Sainsily, X., Leduc, R., Castel, H. and Prezeau, L. 2014. Biased signaling regulates the pleiotropic effects of the urotensin II receptor to modulate its cellular behaviors. FASEB J. 28, 5148-5162. https://doi.org/10.1096/fj.14-249771
-
Chopineau, M., Martinat, N., Galet, C., Guillou, F. and Combarnous, Y. 2001.
${\beta}$ -subunit 102-104 residues are crucial to confer FSH activity to equine LH/CG but are not sufficient to confer FSH activity to human CG. J. Endocrinol. 169, 55-63. https://doi.org/10.1677/joe.0.1690055 - Combarnous, Y., Guillo, F. and Martinat, N. 1984. Comparison of in vitro follicle-stimulating hormone (FSH) activity of equine gonadotropins (luteinizing hormone, FSH, and chorionic goandotropin) in male and female rats. Endocrinology 115, 1821-1827. https://doi.org/10.1210/endo-115-5-1821
- Condon, W. A., Ganjam, W. K. and Kenney, R. M. 1979. Catecholamines and equine luteal progesterones. J. Reprod. Fertil. Suppl. 27, 199-203.
- Conley, A. J. 2016. Review of the reproductive endocrinology of the pregnant and parturient mare. Theriogenology 86, 355-365. https://doi.org/10.1016/j.theriogenology.2016.04.049
- Daels, P. F., Shideler, S., Lasley, B. L. and Hughes, J. P. 1990. Source of oestrogen in early pregnancy in the mare. J. Reprod. Fertil. 90, 55-61. https://doi.org/10.1530/jrf.0.0900055
- Drancourt, M. A., Thatcher, W. W., Terqui, M. and Andrieu, D. 1991. Dynamics of ovarian follicular development in cattle during the estrous cycle, early pregnancy and response to PMSG. Domest. Anim. Endocrinol. 8, 209-221. https://doi.org/10.1016/0739-7240(91)90057-Q
- Flores-Flores, G., Velazquez-Canton, E., Boeta, M. and Zarco, L. 2014. Luteoprotective role of equine chorionic gonadotropin (eCG) during pregnancy in the mare. Reprod. Dom. Anim. 49, 420-426. https://doi.org/10.1111/rda.12290
- Freick, M., Passarge, O. and Weber, J. 2017. Lack of effects of an equine chorionic gonadotropin (eCG) administration between days 9 and 15 postpartum on reproductive performance in a Holstein dairy herd. Reprod. Domest. Anim. 52, 429-436. https://doi.org/10.1111/rda.12928
- Galet, C., Guillou, F., Foulon-Gauze, F., Combarnous, Y. and Chopineau, M. 2009. The b104-109 sequence is essential for the secretion of correctly folded single-chain ba horse LH/CG and for its activity. J. Endocrinol. 203, 167-174. https://doi.org/10.1677/JOE-09-0141
-
Galet, C., Menck, Le., Bourhis, C., Chopineau, M., Le Griec, G., Perrin, A., Magallon, T., Attal, J., Viglietta, C., Houdebine, L. M. and Guillou, F. 2000. Expression of a single
${\beta}{\alpha}$ chain protein of equine LH/CG in milk of transgenic rabbits and its biological activity. Mol. Cell. Endocrinol. 174, 31-40. - Garcia-Ispierto, I., Lopez-Helguera, I., Martino, A. and Lopez-Gatius, F. 2012. Reproductive performance of anoestrous high-producing dairy cows improved by adding equine chorionic gonadotrophin to a progesterone-based oestrous synchronizing protocol. Reprod. Domest. Anim. 47, 752-758. https://doi.org/10.1111/j.1439-0531.2011.01954.x
- Jeoung, Y. H., Yoon, J. T. and Min, K. S. 2010. Biological functions of the COOH-terminal amino acids of the a-subunit of tethered equine chorionic gonadotropin. Reprod. Dev. Sci. 34, 47-53.
- Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685. https://doi.org/10.1038/227680a0
- Legardinier, S., Poirier, J. C., Klett, D., Combarnous, Y. and Cahoreau, C. 2008. Stability and biological activities of heterodimeric and single-chain equine LH/chorionic goandotropin variants. J. Mol. Endocrinol. 40, 185-198. https://doi.org/10.1677/JME-07-0151
- Min, K. S., Hattori, N., Aikawa, J. I., Shiota, K. and Ogawa, T. 1996. Site-directed mutagenesis of recombinant equine chorionic gonadotropin/luteinizing hormone: differential role of oligosaccharides in luteinizing hormone- and follicle-stimulating hormone-like activities. Endocr. J. 43, 585-593. https://doi.org/10.1507/endocrj.43.585
- Min, K. S., Hiyama, T., Seong, H. H., Hattori, N., Tanaka, S. and Shiota, K. 2004. Biological activities of tethered equine chorionic gonadotropin (eCG) and its deglycosylated mutants. J. Reprod. Dev. 50, 297-304. https://doi.org/10.1262/jrd.50.297
- Min, K. S., Liu, X., Fabritz, J., Jaquette, J., Abell, A. N. and Ascoli, M. 1998. Mutations that induce constitutive activation and mutations that impair signal transduction modulate the basal and/or agonist-stimulated internalization of the lutropin/choriogonadotropin receptor. J. Bio. Chem. 273, 34911-34919. https://doi.org/10.1074/jbc.273.52.34911
-
Nanjidsuren, T. and Min, K. S. 2014. The transcription factor Ap-1 regulates monkey
$20{\alpha}$ -hydroxysteroid dehydrogenase promoter activity in CHO cells. BMC Biotechnol. 14, 71. https://doi.org/10.1186/1472-6750-14-71 - Pacala, N., Corin, N., Bencsik, I., Dronca, D., Cean, A., Boleman, A., Caraba, V. and Papp, S. 2010. Stimulation of the reproductive function at cyclic cows by ovsynch and PRID/ECG. Anim. Sci. Biotech. 43, 317-320.
- Park, J. J., JarGal, N., Yoon, J. T. and Min, K. S. 2009. Function of the tethered rec-eCG in rat and equine receptors. Reprod. Dev. Biol. 33, 229-236.
-
Park, J. J., JarGal, N., Yoon, J. T. and Min, K. S. 2010.
${\beta}$ -subunit 94-96 residues of tethered recombinant equine chorionic gonadogropin are important sites luteinizing hormone and follicle stimulating hormone like activities. Reprod. Dev. Biol. 34, 33-40. - Rostami, B., Niasari-Naslaji, A., Vojgani, M., Nikjou, D., Amanlou, H. and Gerami, A. 2011. Effect of eCG on early resumption of ovarian activity in postpartum dairy cows. Anim. Reprod. Sci. 128, 100-106. https://doi.org/10.1016/j.anireprosci.2011.09.006
-
Saneyoshi, T., Min, K. S., Ma, X., Nambo, Y., Hiyama, T., Tanaka, S. and Shiota, K. 2001. Equine follicle-stimulating hormone: molecular cloning of
${\beta}$ -subunit and biological role of the asparagine-linked oligosaccharide at$asparagines^{56}$ of${\alpha}$ -subunit. Biol. Reprod. 65, 1686-1690. https://doi.org/10.1095/biolreprod65.6.1686 - Sousa, M., Mendes, G. P., Campos, D. B., Baruselli, P. S. and Papa, P. C. 2016. Equine chorionic gonadotropin modulates the expression of genes related to the structure and function of the bovine corpus luteum. Plos One 11, e0164089. https://doi.org/10.1371/journal.pone.0164089
- Stewart, F. and Allen, W. R. 1981. Biological functions and receptor binding activities of equine chorionic goandotropins. J. Reprod. Ferti. 62, 527-536. https://doi.org/10.1530/jrf.0.0620527
- Wei, S. C., Gong, Z. D., Zhao, H. W., Liang, H, Q., Lai, L. J. and Deng, Y. Y. 2016. Equine chorionic gonadotropin influence on sheep oocyte in vitro maturation, apoptosis, and follicle-stimulating hormone receptor and luteinizing hormone receptor expression. Genet. Mol. Res. 15, doi: 10.4238/gmr15049162.