DOI QR코드

DOI QR Code

말의 LH/CGR를 발현하는 CHO 세포와 PathHunter Parental 세포에서 유전자 재조합 eCGβ/α의 생화학적 특성

Biochemical Characterization of Recombinant Equine Chorionic Gonadotropin (rec-eCG), Using CHO Cells and PathHunter Parental Cells Expressing Equine Luteinizing Hormone/Chorionic Gonadotropin Receptors (eLH/CGR)

  • 이소연 (한경대학교 미래융합기술대학원 동물생명공학전공) ;
  • ?바락차 뭉흐자야 (한경대학교 미래융합기술대학원 동물생명공학전공) ;
  • 김정수 (한경대학교 미래융합기술대학원 동물생명공학전공) ;
  • 성훈기 (한경대학교 미래융합기술대학원 동물생명공학전공) ;
  • 강명화 (호서대학교 식품영양학과) ;
  • 민관식 (한경대학교 미래융합기술대학원 동물생명공학전공)
  • Lee, So-Yun (Animal Biotechnology, Graduate School of Future Convergence Technology, Institute of Genetic Engineering, Hankyong National University) ;
  • Byambaragchaa, Munkhzaya (Animal Biotechnology, Graduate School of Future Convergence Technology, Institute of Genetic Engineering, Hankyong National University) ;
  • Kim, Jeong-Soo (Animal Biotechnology, Graduate School of Future Convergence Technology, Institute of Genetic Engineering, Hankyong National University) ;
  • Seong, Hun-Ki (Animal Biotechnology, Graduate School of Future Convergence Technology, Institute of Genetic Engineering, Hankyong National University) ;
  • Kang, Myung-Hwa (Department of Food Science and Nutrition, Hoseo University) ;
  • Min, Kwan-Sik (Animal Biotechnology, Graduate School of Future Convergence Technology, Institute of Genetic Engineering, Hankyong National University)
  • 투고 : 2017.03.14
  • 심사 : 2017.07.20
  • 발행 : 2017.08.30

초록

eCG는 다른 포유동물에서 FSH와 LH의 활성을 나타내기 때문에 성선자극 호르몬 family에서 아주 특이적이고 많은 당쇄가 수식되어진 알파와 베타의 비공유결합으로 구성되어 있다. 유전자 재조합 $eCG{\beta}/{\alpha}$의 생물학적 기능을 규명하기 위하여 말의 LH/CGR의 포유동물발현용 벡터를 구축하였다. 재조합 $eCG{\beta}/{\alpha}$의 활성분석은 말의 LH/CGR가 일시적으로 발현되는 CHO-K1 세포와 지속적으로 발현되는 PathHunter Parental 세포를 이용하여 분석하였다. 유전자 재조합 $eCG{\beta}/{\alpha}$는 CHO-K1 부유세포의 상층으로 효율적으로 분비되었으며, 분비량은 transfection 후 1일에서 7일까지 약 200 mIU/ml이었다. Western blot 분석결과는 재조합 $eCG{\beta}/{\alpha}$의 분자량은 약 40-45 kDa으로 검출되었다. eLH/CGR가 발현되는 CHO-K1 세포에서의 cAMP분비량으로 재조합 $eCG{\beta}/{\alpha}$의 활성을 분석하였다. 그 결과 cAMP농도는 재조합 $eCG{\beta}/{\alpha}$의 농도의존적으로 증가하였다. eLH/CGR가 일시적으로 발현하는 CHO-K1 세포에서 $EC_{50}$ 값은 $8.1{\pm}6.5ng$이었다. 또한 일시적 및 지속적으로 eLH/CGR가 발현하는 PathHunter Parental 세포에서도 재조합 $eCG{\beta}/{\alpha}$의 LH 활성 분석결과 높은 활성을 나타내는 것으로 확인되었으며, 이들의 $EC_{50}$ 값은 각각 $5.0{\pm}4.7ng/ml$, $4.5{\pm}5.2ng/ml$으로 나타났다. 따라서 이러한 결과에 의하면 재조합 $eCG{\beta}/{\alpha}$는 말의 LH/CGR가 발현하는 세포에서 생물학적 활성을 나타난다는 것을 확인하였으며, PathHunter Parental 세포에서 지속적으로 발현되는 세포의 확보는 당쇄제거에 의한 재조합 eCG의 돌연변이등에 관한 기능적인 메커니즘을 밝히는데 유용할 것으로 사료된다.

Equine chorionic gonadotropin (eCG) consists of highly glycosylated ${\alpha}-$ and ${\beta}-subunits$ and is a unique member of the gonadotropin family, because it elicits the response characteristics of follicle stimulating hormone (FSH) and luteinizing hormone (LH) in species other than the horse. To directly assess the biological function of $rec-eCG{\beta}/{\alpha}$, we constructed mammalian expressing vectors of equine luteinizing hormone/chorionic gonadotropin receptors (eLH/CGR). The activity of $rec-eCG{\beta}/{\alpha}$ in vitro assayed in transient transfected CHO-K1 cells and in stably transfected PathHunter Parental cells with eLH/CGR was investigated. $rec-eCG{\beta}/{\alpha}$ was efficiently secreted in the CHO-K1 suspension cell media, and the quantity detected was about 200 mIU/ml from 1 to 7 days after transfection. In the western blot analysis, the $rec-eCG{\beta}/{\alpha}$ protein was broadly identified to be about 40~45 kDa molecular weight. The cAMP stimulation in CHO-K1 cells expressing eLH/CGR was determined to evaluate the activity of $rec-eCG{\beta}/{\alpha}$. The cAMP concentration increased in direct proportion to the concentration of the $rec-eCG{\beta}/{\alpha}$. The $EC_{50}$ value in the transient transfected CHO-K1 cells was $8.1{\pm}6.5ng$. The stable cell lines of eLH/CGR were established in the PathHunter Parental cells expressing ${\beta}-arrestin$. We found that $rec-eCG{\beta}/{\alpha}$ had full LH activity in the PathHunter Parental cells expressing eLH/CGR. The $EC_{50}$ value in transient and stable cells was $5.0{\pm}4.7ng/ml$ and $4.5{\pm}5.2ng/ml$, respectively. These results suggest that $rec-eCG{\beta}/{\alpha}$ has a biological activity in a cell expressing eLH/CGR. These stable cells expressed in PathHunter Parental cells could be useful for elucidating the functional mechanisms of deglycosylated $rec-eCG{\beta}/{\alpha}$ mutants.

키워드

참고문헌

  1. Apparailly, F. and Combarnous, Y. 1994. Role of sialic acid residues in the in vitro superactivity of human choriogonadotropin (hCG) in rat Leydig cells. Biochim. Biophys. Acta 1224, 559-569. https://doi.org/10.1016/0167-4889(94)90294-1
  2. Ascoli, M., Fanelli, F. and Segaloff, D. L. 2002.The lutropin/choriogonadotropin receptor, a 2002 perspective. Endocr. Rev. 23, 141-174. https://doi.org/10.1210/edrv.23.2.0462
  3. Boeta, M. and Zarco, L. 2012. Luteogenic and luteotropic effects of eCG during pregnancy in the mare. Anim. Reprod. Sci. 130, 57-62. https://doi.org/10.1016/j.anireprosci.2012.01.001
  4. Brule, C., Perzo, N., Joubert, J. E., Sainsily, X., Leduc, R., Castel, H. and Prezeau, L. 2014. Biased signaling regulates the pleiotropic effects of the urotensin II receptor to modulate its cellular behaviors. FASEB J. 28, 5148-5162. https://doi.org/10.1096/fj.14-249771
  5. Chopineau, M., Martinat, N., Galet, C., Guillou, F. and Combarnous, Y. 2001. ${\beta}$-subunit 102-104 residues are crucial to confer FSH activity to equine LH/CG but are not sufficient to confer FSH activity to human CG. J. Endocrinol. 169, 55-63. https://doi.org/10.1677/joe.0.1690055
  6. Combarnous, Y., Guillo, F. and Martinat, N. 1984. Comparison of in vitro follicle-stimulating hormone (FSH) activity of equine gonadotropins (luteinizing hormone, FSH, and chorionic goandotropin) in male and female rats. Endocrinology 115, 1821-1827. https://doi.org/10.1210/endo-115-5-1821
  7. Condon, W. A., Ganjam, W. K. and Kenney, R. M. 1979. Catecholamines and equine luteal progesterones. J. Reprod. Fertil. Suppl. 27, 199-203.
  8. Conley, A. J. 2016. Review of the reproductive endocrinology of the pregnant and parturient mare. Theriogenology 86, 355-365. https://doi.org/10.1016/j.theriogenology.2016.04.049
  9. Daels, P. F., Shideler, S., Lasley, B. L. and Hughes, J. P. 1990. Source of oestrogen in early pregnancy in the mare. J. Reprod. Fertil. 90, 55-61. https://doi.org/10.1530/jrf.0.0900055
  10. Drancourt, M. A., Thatcher, W. W., Terqui, M. and Andrieu, D. 1991. Dynamics of ovarian follicular development in cattle during the estrous cycle, early pregnancy and response to PMSG. Domest. Anim. Endocrinol. 8, 209-221. https://doi.org/10.1016/0739-7240(91)90057-Q
  11. Flores-Flores, G., Velazquez-Canton, E., Boeta, M. and Zarco, L. 2014. Luteoprotective role of equine chorionic gonadotropin (eCG) during pregnancy in the mare. Reprod. Dom. Anim. 49, 420-426. https://doi.org/10.1111/rda.12290
  12. Freick, M., Passarge, O. and Weber, J. 2017. Lack of effects of an equine chorionic gonadotropin (eCG) administration between days 9 and 15 postpartum on reproductive performance in a Holstein dairy herd. Reprod. Domest. Anim. 52, 429-436. https://doi.org/10.1111/rda.12928
  13. Galet, C., Guillou, F., Foulon-Gauze, F., Combarnous, Y. and Chopineau, M. 2009. The b104-109 sequence is essential for the secretion of correctly folded single-chain ba horse LH/CG and for its activity. J. Endocrinol. 203, 167-174. https://doi.org/10.1677/JOE-09-0141
  14. Galet, C., Menck, Le., Bourhis, C., Chopineau, M., Le Griec, G., Perrin, A., Magallon, T., Attal, J., Viglietta, C., Houdebine, L. M. and Guillou, F. 2000. Expression of a single ${\beta}{\alpha}$ chain protein of equine LH/CG in milk of transgenic rabbits and its biological activity. Mol. Cell. Endocrinol. 174, 31-40.
  15. Garcia-Ispierto, I., Lopez-Helguera, I., Martino, A. and Lopez-Gatius, F. 2012. Reproductive performance of anoestrous high-producing dairy cows improved by adding equine chorionic gonadotrophin to a progesterone-based oestrous synchronizing protocol. Reprod. Domest. Anim. 47, 752-758. https://doi.org/10.1111/j.1439-0531.2011.01954.x
  16. Jeoung, Y. H., Yoon, J. T. and Min, K. S. 2010. Biological functions of the COOH-terminal amino acids of the a-subunit of tethered equine chorionic gonadotropin. Reprod. Dev. Sci. 34, 47-53.
  17. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685. https://doi.org/10.1038/227680a0
  18. Legardinier, S., Poirier, J. C., Klett, D., Combarnous, Y. and Cahoreau, C. 2008. Stability and biological activities of heterodimeric and single-chain equine LH/chorionic goandotropin variants. J. Mol. Endocrinol. 40, 185-198. https://doi.org/10.1677/JME-07-0151
  19. Min, K. S., Hattori, N., Aikawa, J. I., Shiota, K. and Ogawa, T. 1996. Site-directed mutagenesis of recombinant equine chorionic gonadotropin/luteinizing hormone: differential role of oligosaccharides in luteinizing hormone- and follicle-stimulating hormone-like activities. Endocr. J. 43, 585-593. https://doi.org/10.1507/endocrj.43.585
  20. Min, K. S., Hiyama, T., Seong, H. H., Hattori, N., Tanaka, S. and Shiota, K. 2004. Biological activities of tethered equine chorionic gonadotropin (eCG) and its deglycosylated mutants. J. Reprod. Dev. 50, 297-304. https://doi.org/10.1262/jrd.50.297
  21. Min, K. S., Liu, X., Fabritz, J., Jaquette, J., Abell, A. N. and Ascoli, M. 1998. Mutations that induce constitutive activation and mutations that impair signal transduction modulate the basal and/or agonist-stimulated internalization of the lutropin/choriogonadotropin receptor. J. Bio. Chem. 273, 34911-34919. https://doi.org/10.1074/jbc.273.52.34911
  22. Nanjidsuren, T. and Min, K. S. 2014. The transcription factor Ap-1 regulates monkey $20{\alpha}$-hydroxysteroid dehydrogenase promoter activity in CHO cells. BMC Biotechnol. 14, 71. https://doi.org/10.1186/1472-6750-14-71
  23. Pacala, N., Corin, N., Bencsik, I., Dronca, D., Cean, A., Boleman, A., Caraba, V. and Papp, S. 2010. Stimulation of the reproductive function at cyclic cows by ovsynch and PRID/ECG. Anim. Sci. Biotech. 43, 317-320.
  24. Park, J. J., JarGal, N., Yoon, J. T. and Min, K. S. 2009. Function of the tethered rec-eCG in rat and equine receptors. Reprod. Dev. Biol. 33, 229-236.
  25. Park, J. J., JarGal, N., Yoon, J. T. and Min, K. S. 2010. ${\beta}$-subunit 94-96 residues of tethered recombinant equine chorionic gonadogropin are important sites luteinizing hormone and follicle stimulating hormone like activities. Reprod. Dev. Biol. 34, 33-40.
  26. Rostami, B., Niasari-Naslaji, A., Vojgani, M., Nikjou, D., Amanlou, H. and Gerami, A. 2011. Effect of eCG on early resumption of ovarian activity in postpartum dairy cows. Anim. Reprod. Sci. 128, 100-106. https://doi.org/10.1016/j.anireprosci.2011.09.006
  27. Saneyoshi, T., Min, K. S., Ma, X., Nambo, Y., Hiyama, T., Tanaka, S. and Shiota, K. 2001. Equine follicle-stimulating hormone: molecular cloning of ${\beta}$-subunit and biological role of the asparagine-linked oligosaccharide at $asparagines^{56}$ of ${\alpha}$-subunit. Biol. Reprod. 65, 1686-1690. https://doi.org/10.1095/biolreprod65.6.1686
  28. Sousa, M., Mendes, G. P., Campos, D. B., Baruselli, P. S. and Papa, P. C. 2016. Equine chorionic gonadotropin modulates the expression of genes related to the structure and function of the bovine corpus luteum. Plos One 11, e0164089. https://doi.org/10.1371/journal.pone.0164089
  29. Stewart, F. and Allen, W. R. 1981. Biological functions and receptor binding activities of equine chorionic goandotropins. J. Reprod. Ferti. 62, 527-536. https://doi.org/10.1530/jrf.0.0620527
  30. Wei, S. C., Gong, Z. D., Zhao, H. W., Liang, H, Q., Lai, L. J. and Deng, Y. Y. 2016. Equine chorionic gonadotropin influence on sheep oocyte in vitro maturation, apoptosis, and follicle-stimulating hormone receptor and luteinizing hormone receptor expression. Genet. Mol. Res. 15, doi: 10.4238/gmr15049162.