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Abstract—As mobile systems are performing various 
functionality in the IoT (Internet of Things) era, 
network-on-chip (NoC) plays a pivotal role to support 
communication between the tens and in the future 
potentially hundreds of interacting modules in 
system-on-chips (SoCs). Owing to intensive research 
efforts more than a decade, NoCs are now widely 
adopted in various SoC designs. Especially, studies on 
application-specific NoCs (ASNoCs) that consider the 
heterogeneous nature of modern SoCs contribute a 
significant share to use of NoCs in actual SoCs, i.e., 
ASNoC connects non-uniform processing units, 
memory, and other intellectual properties (IPs) using 
flexible router positions and communication paths. 
Although it is not difficult to find the prior works on 
ASNoC synthesis and optimization, little research has 
addressed the issues how to convert different 
protocols and data widths to make a NoC compatible 
with various IPs. Thus, in this paper, we address 
important issues on ASNoC implementation to 
support and convert multiple interfaces. Based on the 
in-depth discussions, we finally introduce our FPGA-
proven full-custom ASNoC.    
 
Index Terms—Network-on-chip, NoC, application-
specific NoC, SoC, processor, computer architecture    

I. INTRODUCTION 

Drastic technological advances in the semiconductor 
device fabrication have offered an opportunity to 
implement mobile embedded systems on a single chip. It 
has led to the advent of large application-specific 
multiprocessor system-on-chips (MPSoCs) and general-
purpose chip-multiprocessors (CMPs), which are 
advantageous to traditional single processors in terms of 
performance, power consumption and footprint. In 
MPSoCs and CMPs, on-chip communication plays a 
vital role that cannot be achievable by traditional non-
scalable bus architecture. Instead, networks-on-chips 
(NoCs) have been widely adopted as a \textit{de facto} 
architecture in SoCs [1-3]. 

Intensive research has been performed on NoC designs 
more than a decade to improve their performance and 
energy efficiency or reduce area overhead. Many NoC 
topologies such as mesh, torus, etc. have been presented 
(to list a few, [4, 5]), various design parameters such as 
operating frequency, bandwidth, etc. have been studied 
as well [6, 7]. Significant research efforts also have been 
put into developing routing strategy that aims to find the 
optimal routing paths while the dead-lock free operation 
should be guaranteed [8, 9]. 

While the most NoC works have focused on regular 
NoC designs that consider uniformly distributed nodes 
composed of homogenous processing cores and 
memories, relatively fewer works have studied on 
application-specific NoC (ASNoC) designs that contain 
non-uniform processing units and flexible router 
positions and communication paths [10-16]. A design 
automation flow of ASNoC was introduced in [10, 11], 
and a design method that considers wiring complexity of 
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the ASNoC during the topology synthesis process was 
proposed in [1]. More recent works have focused on 
optimal floorplanning of cores and placement of routers 
in ASNoC [12-14] and heterogeneous networks [15, 16]. 
Due to the fact that intellectual properties (IPs) including 
cores in a SoC are highly non-uniform, those works on 
ASNoC designs have rapidly reached the industrial 
practice. As a result, several commercial ASNoC 
architectures are available in the market, and are 
popularly adopted in modern SoCs. FlexNoC from 
Arteries [17], NIC-301 from ARM [18] and SonicsGN 
from SONICS [19] are the representative commercial 
ASNoC architectures.  

However, unfortunately none has addressed the issues 
to convert protocols in ASNoC or network interface (NI) 
development. IPs uses different protocols such as 
advanced extensible interface (AXI), advanced high-
performance bus (AHB), advanced peripheral bus (APB), 
etc. They also have different data widths. For example, 
processors use 32 bit data while memories provide 128 
bit access. A lot of papers including [20-23] present 
novel NI implementations, but only some work [24, 25] 
discusses the details when supporting the existing 
protocols of AXI and OCP. Even in two papers, they 
only pay attention to convert the protocols into their own 
internal ones, but not to convert two existing protocols. 
The conversions between the existing protocols seem 
trivial and straightforward, but it is not actually. Thus in 
this paper, we will reveal important conversion issues on 
ASNoC implementation. After in-depth discussions, we 
implemented one of possible candidates in verilog RTL 
code and verified functionality by running H.265 
CODEC on Xilinx FPGA. 

II. BACKGROUND 

This section offers a brief review of important 
terminology and concepts relevant to ASNoC. For a 
more comprehensive introduction, please take a look at 
the ARM advanced microcontroller bus architecture 
(AMBA) protocol manuals available online [26]. 

On-chip protocol. Not only which components or 
blocks it houses in a SoC, but also how they interconnect 
has become a overriding concern for SoC industry. As a 
solution for the blocks to interface with each other, the 
AMBA protocol has become the most widely used on-

chip interconnect specification in SoC designs. It 
includes AXI, AHB and APB. 

Transaction and transfer. Transaction and transfer 
are the terms sometimes used as synonyms in fields. We 
define one from another clearly in this paper as follows: 
Transaction means a complete operation for a request, 
while transfer stands for a data transmission in a certain 
cycle. In other words, a transaction is a set of transfers. 

Burst transaction and length. AXI and AHB protocol 
support a number of consecutive data transfers in a 
transaction, which is called burst. Length is the number 
of data in a transaction, namely the number of transfers 
in a transaction is determined by the length. Meanwhile, 
a transaction with single data is called a single 
transaction. 

Data width, data size, and narrow transfer. Data 
width means a maximum allowable data size, which 
equals the number of physical wires for data transfer, 
whereas data size is a size of actual transferring data. 
Note that the data size is irrelevant to the length, and the 
data size cannot be bigger than the data width. AXI and 
AHB provide options to specify the data size, which is 
called narrow transfer when the data size is smaller than 
the data width.  

Transaction ID (TID) and ordering. AXI protocol has 
a TID field, which expresses dependencies among other 
transactions. Although it is named as `ID', it is not a 
unique value but it is a kind of a group ID. Transactions 
assigned the same TID by the same master belong to the 
same group, and they should be processed in the order as 
generated. If transactions are issued by different master 
IPs or get different TIDs from a master IP, they should 
be processed exclusively, and thus can be processed in 
parallel. In other words, a slave can switch the 
completion order of them, which implies that a NoC 
should take account for the ordering requirement of 
transactions with same TID to guarantee the correctness 
of the system. 

III. ISSUES ON PROTOCOL CONVERSIONS 

Given that IPs in a SoC adopt different on-chip 
protocols, an ASNoC should support communication 
between different protocols, namely protocol conversion 
should be implemented. Indeed, it is not difficult to 
implement such protocol conversion if the different 
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protocols support the similar features (e.g., single 
transaction or incremental burst of length 4), but 
unfortunately they do not in reality. For example, AXI 
provides continuous burst length, but AHB and APB do 
not have such feature. Ditto for byte-enable feature. Fig. 
1 shows the exclusive features belonging to the specific 
protocols while common ones are omitted. Now then, 
how to implement the protocol conversion? Before 
getting into the details, we would like give a brief answer 
that implementing a perfect protocol conversion 
mechanism in a NoC is almost impossible (i.e., 
theoretically it may be possible, but impractical), but 
cooperation with NoC designers and IP designers can 
lead practicable solutions. 

 
1. AXI → AHB 

 
As seen in Fig. 1, the burst length of AXI can be an 

arbitrary number (thus, continuous length), whereas 
AHB supports only 4, 8, 16 lengths (thus, discrete 
length). Let us now suppose that a master IP using AXI 
transmits a burst with length 6 to a slave IP using AHB. 
Then, a conversion problem happens. To resolve this 
problem, there are two possible solutions. The first is that 
the slave NI changes the burst to just one transaction by 
exploiting an INCR burst of AHB (incrementing address, 
unspecified number of transactions). The next is that the 
slave NI splits the burst into multiple transactions of 
length 1, 4, 8 or 16, and merges the responses after the 
slave IP processes. Implementing the first is simple, but 
the performance would not be guaranteed if a slave IP 
like a memory controller is optimized for a certain fixed 
length transactions (i.e., generally it is). In that case, the 
later may result the better performance although the 
additional hardware implementation is required. We 
select the first solution in our ASNoC design. Table 1 

wraps up the discussion. 
Another prominent difference between AXI and AHB 

is supporting byte-enable feature; AXI does, but AHB 
does not. Supposed that a master IP using AXI sends a 
burst transaction with a byte-enable signal, and the byte-
enable signal has more than one bit to be zero (a zero 
byte-enable bit means the corresponding data must be 
ignored), then a slave IP using AHB cannot process the 
burst transactions directly. Therefore, we have to find a 
solution of this problem. 

Here is a conservative way to resolve the problem: 
enforce a slave NI to deliver a transaction to a slave IP 
only when the slave NI receives all transfers completely. 

Only when all bytes are valid (i.e., there is no zero bit 
inside the byte-enable signal), the transaction can be 
treated as a burst. Otherwise, the transaction should be 
divided into byte-level write ones. This way is similar to 
the well-known telecommunications technique, store-
and-forward. Like what the store-and-forward technique 
has a disadvantage of performance penalty, this 
conservative way does the same. More precisely, let us 
compare the communications of AXI to AXI and AXI to 
AHB. The AXI to AXI exploits the pipelined 
transmissions like the cut-through technique, which can 
achieve the performance enhancement. However, the 
AXI to AHB cannot use the pipelining method, resulting 
in performance degradation. 

The design complexity due to handling the zero bits 
inside the byte-enable signal is another problem. As 
aforementioned, a burst should be split into byte-level 
transactions if there is any zero bit inside the byte-enable 
signal. However, if the split transactions have all valid 
byte-enable bits and they are consecutive, they can be 
merged to a burst for the fast operation. For example, let 
us suppose that there is a burst of length 8, and only the 
4th transfer has two zero bits in the byte-enable. Then the 
first three byte-level transactions can be transmitted as a 
burst, the 5th to 8th transactions ditto. The 4th transfer has 
to be transmitted as two byte-level transactions. Due to 

 

Fig. 1. Supportive features in different protocols. 
 

Table 1. Converting incompatible Burst Length between AXI 
and AHB 

 One transaction 
of undefined length 

Multiple transactions 
of length 1,4,8,16 

Add. logics - - 

Comparison Maybe unoptimized for 
salve IPs 

Complex hardware 
requirement 
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the fact that the zero bits in the byte-enable signal are 
random, thus there are too many cases that a burst can be 
split and re-merged, the above procedure may 
substantially increase the design complexity. 

Finally, we would like to suggest that SoC designers 
deactivate the byte-enable feature for the AXI to AHB 
communication. Then the NoC speculates there is no 
byte-enable signals in all transactions, thus can exploit 
the cut-through technique for all AXI to AHB 
communications. Table 2 concludes discussion about the 
byte-enable issue, and we offer both options.  

 
2. AHB → AXI 

 
The problem here is from the INCR burst feature that 

is supportive in AHB but is not in AXI (i.e., again, AXI 
cannot deal with the undefined burst length as seen in Fig. 
1. To resolve this problem, the easiest solution with a 
simple hardware support is to dismantle a burst 
transaction and re-generate multiple single transactions. 
However, this way may cause low performance of AXI 
slave IPs that are optimized to the burst transactions, and 
busy network traffic due to the number of transactions 
increase. 

On the other hands, we may hold benefit of using burst 
transactions by packing a part of transfers as new 
transactions of the fixed length. A master NI or a slave 
NI has a certain number of buffers and generates a 
transaction when the buffers are full or the burst ends. 
This method extends the latency due to gathering while 
the network traffic can be reduced. Depending on the 
number of buffers, there are a trade-off on these effects. 
Table 3 summarizes the answers of the question in this 

subsection. In our ASNoC, because few IPs exploit the 
INCR feature, we choose the first method, the simple one. 

 
3. (AXI or AHB) → APB 

 
As shown in Fig. 1, APB does not have any special 

feature that AXI or AHB has. In other words, a master IP 
has strict rules to use APB. Therefore, conversion issues 
on AXI or AHB to APB is straightforward: a master IP 
that transmit any transaction to an APB slave IP should 
transmit transactions fit to APB requirement. A master IP 
must not use the byte-enable. Because APB does not 
support the narrow transfer, data widths of transactions 
from a master IP should be same to the APB data width. 

 
4. Other Protocols 

 
We have discussed AMBA protocols since they are 

most common in commercial uses, but there exist other 
protocols such as wishbone [27] and TileLink [28]. It 
seems inefficient to convert one by one but it may 
require a common intermediate format that covers all 
protocols, which is another challenge. 

IV. ISSUES ON DATA WIDTH CONVERSIONS 

Fig. 2. is an example of SoC architectures that our 
ASNoC targets. This architecture is composed of ten 
master IPs and five slave IPs. Later in Section V, we will 

Table 2. Converting byte-enable from AXI to AHB 

 Conservative Speculative 
Byte Enable Considered Ignored 
Similarity Store-and-forward Cut-through 

Comparison Slow & complex Fast & simple 
Correctness Guaranteed by NoC Considered by master IPs 

 
Table 3. Ways to realize the AHB to AXI communication: 
converting to multiple single transactions or multiple burst 
transactions 

 Multiple single Multiple burst 
Add. logics - Collecting logics 
Drawback Transaction increase Collecting overhead 

 
 

 

Fig. 2. An example SoC architecture that our ASNoC targets. 
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describe the details of this architecture, but now we 
would like focus on the data widths of the IPs. As seen in 
the figure, some IPs use 32 bit operation, whereas others 
use 128 bit. To make the IPs using different data widths 
communicate with each other, the data widths should be 
converted. And, here comes the questions: how to 
perform the data width conversion, and who takes charge 
of it? 

 
1. Narrow Slave Transaction 

 
We call the case when a master IP's data width is 

greater than a slave IP's the narrow slave transaction, i.e., 
this is different with a term, narrow transfer. In this case, 
any data from a master IP must be split according to the 
data with of a target slave IP. Splitting data causes the 
length (the number of data in a transaction) increase in 
proportion to data width of a master IP divided by that of 
a slave IP. For instance, if a 128 bit master IP sends 8 
data in a transaction to a 32 bit slave IP, the converted 
length becomes 32 (= 8·128/32). This conversion process 
may look simple. However, unfortunately, there is a 
limitation of the maximum allowable length in AMBA 
protocol (e.g., 16 in AXI protocol). So the 32 lengths 
transaction resulting from the example should be divided 
into two transactions, each of which has 16 lengths. Of 
course, the split transactions should be merged to one 
after they are processed in the slave IP. 

If implementing master NIs to take charge of the 
splitting & merging process, we have only concern to 
make master NIs process their own transactions well. In 
other words, a master NI splits a transaction from its 
master IP and sends them to a target slave IPs. When the 
split transactions are processed and returned to the 
master NI, the master NI merges the results and sends it 
back to the master IP. A problem that we are facing here 
is to let the master NI correctly merge the results of the 
split transactions to the results of the original transactions. 
Let us suppose that there are many transactions given to 
the master NI, each of which has own TID assigned by 
the master IP. The master NI splits and transfers the 
transactions in a way that each split transaction holds the 
TID same to that of its parent transaction. Then, because 
a slave IP can process the transactions with different TID 
in any order, the returned results of split transactions may 
not follow the original order that the transactions were 

sent. For example, A and B transactions are divided into 
A0~A3 and B0~B3, respectively. A master NI sends 
transactions in the order A0-A1-A2-A3-B0-B1-B2-B3, 
but they can be returned in the order A0-B0-B1-A1-B2-
B3-A2-A3. Therefore, the master NI has to reorder the 
returned (out of order) results of the split transactions to 
merge them. 

To avoid overhead due to the reordering process and 
accompanying hardware, we can design a master NI to 
assign a new TID to the split transactions instead of 
using the parent TID, i.e., the parent TID may be 
recorded in the master NI for the future merging process. 
By assigning the same TID to all the split transactions 
(thereby a slave IP sequentially process the transactions), 
the master NI expects the results will be returned in order. 
This way, however, can cause the performance 
degradation due to the low degree of parallelism. 

Meanwhile, placing master NIs in charge of the 
narrow slave transaction may inflict a loss of network 
utilization. A network that supports a communication 
between 128 bit master and slave IPs has a bandwidth of 
128 bit. Converting a 128 bit transaction to four 32 bit 
transactions results in only partial utilization of the 128 
bit bandwidth, and multiple cycle transmission causes the 
low network latency. The resulting multiple packets also 
induce the network overhead. To overcome these issues, 
we can design the slave NIs to perform the data width 
conversion. Because the transactions are split and 
merged in slave NIs after transmitting the network, the 
network can be fully utilized. 

However, merging process may become more 
complicated than the previous master NI-centered 
method. A slave NI should take care of (the number of 
master) ´  (the number of TIDs in one master) TIDs at 
the same time, which may require the more complex 
reordering process. Similar to what the master NIs assign 
their own TIDs to the transactions to skip the reordering 
process, we can adopt the way that a slave NI gives a 
(same) new TID to all transactions. In our ASNoC 
implementation, we choose this way. The discussion 
about the narrow slave transaction is summarized in 
Table 4.  

 
2. Narrow Slave Transactions of a Wrapping Burst 

 
A wrapping burst is similar to an incrementing burst, 
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except that the address wraps around to a lower address 
if the address reaches the predefined limit [26]. Because 
the data width conversion may change the sequence of 
addresses, the resulting split transactions may become no 
longer the wrapping bursts like Fig. 3. In the figure, a 64 
bit master sends a wrapping burst of length 16, which 
will be transformed to 32 data in a 32 bit slave. Supposed 
that a slave NI divides it into two 16 data, 
0x08$\sim$0x44 and 0x48$\sim$0x04, since the 32 data 
exceeds the possible length. The former part can be 
expressed as an incrementing burst of 16. However, 
unfortunately the later part cannot be any burst since the 
address of the wrapping burst of length 16 starting from 
0x48 is wrapped to 0x40 after 0x78. 

The easiest way maybe is converting each burst to 
multiple single transactions. It makes a design quite 
simple, but the number of transactions are skyrocketing 
to the length, which may cause significant overhead to 
network and/or a slave. One way to increase the 
efficiency is that first we split a transaction at the 
wrapping point, which corresponds to the red line in Fig. 
3 and then adopt the approaches in Section IV-A as the 
second step. This solution may reduce the performance 
overhead due to the increase of transactions, but the 
required hardware may become complicated. Another 
possible solution is that a master NI or a slave NI issues a 
wrapping burst as an incrementing burst and then 
corrects a sequence by reordering the returned data 
autonomously. It is the most efficient way in terms of 
network traffic, but it may cause latency increase and 
design complexity. Table 5 sums up this subsection. 

3. Wide Slave Transactions  
 
There exists an opposite case to the narrow slave 

transaction whereby data width of a slave IP is greater 
than that of a master IP. We call this wide slave 
transaction. If a target slave IP uses AXI or AHB that 
supports the narrow transfer, slave NIs just send their 
small data width transactions to the slave IP (no problem 
occurs). However, a slave IP using APB that does not 
support the narrow transfer does not know what to do 
with the partial data. For example, if a master IP requests 
a 16 bit write operation to a slave IP using 32 bit APB, 
the slave IP cannot perform the write operation directly. 
Instead, it may have to go through several steps that read 
all the 32 bit data for the target address first, change the 
last 16 bit of the data to the requested ones, and write the 
32 bit data to the address. This solution looks plausible, 
but the fact that APB slave IPs carry out various 
operations (e.g., specific register controls) as well as the 
read/write operations, the presented solution may incur 
unexpected malfunctions. Consequently, there may not 
exist such a perfect solution of the wide slave 
transactions for ABP. 

In our ASNoC, we implement APB slave IPs to 
perform read/write regardless of the original data widths 
of transactions. 

 

Fig. 3. An example of the broken wrapping burst in the narrow 
slave transactions. 
 

Table 4. Splitting & Merging for Narrow Slave Transactions 

 By MNI By SNI 
 TIDs from Master IP A TID from a MNI Concatenated TIDs A TID from a SNI 

MNI Reordering is required - - 
Switch Overhead due to more transactions, Partial utilization Full utilization 

SNI - Low DoP Reordering is required - 

 
 Table 5. Handling the Narrow Slave Transactions of Wrapping 

Burst 

Multiple burst 
 Multiple 

single Sequential Reordered 
Number of  

Transactions 
Many 

(= Length) Low Lowest 

Comparison Slow & 
complex 

Fast & 
complex 

Fastest & 
Most complex 

 
Table 6. The ASNoC resource consumption in the FPGA. 
(value) is the total resource consumption 

Logic LUTs 
35,450 (665,814) 

FFs 
50,248 (457,910) 

LUTRAMS 
990 (4,936) 

SRLs 
48 (1,439) 

RAMB36 
0 (485) 

RAMB18 
0 (367) 

DSP48 
0 (1,129) 
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V. IMPLEMENTATION 

We have implemented our ASNoC in synthesizable 
verilog RTL codes. To verify the functional correctness 
of our ASNoC, we have designed a platform architecture 
shown in Fig. 2 and applied our ASNoC to it. The 
architecture contains ten master IPs including a quad-
core processor, a H.265 codec, video input and output 
modules, etc. and five slave IPs including memories, 
JTAG and USB, etc. The IPs use AXI, AHB and APB 
protocols. The data width of the IPs also varies. The 
network consists of three switches in order to link the IPs. 
Since each IP has its own frequency, master NIs and 
slave NIs use asynchronous FIFOs for clock domain 
crossing. The FIFOs are also inserted between switches if 
they runs at different clocks. 

The processors can use DDR or SDRAM as a main 
memory, and controls other masters through APB 
bridges where slave ports of masters are connected. The 
video input module periodically writes raw images from 
a camera into memories. On the contrary, the video 
output module reads images from memories and displays 
them on a monitor through a HDMI cable. The H.265 
codec operates by collaborating with these two video 
modules persistently. 

We have developed several testbenches to check the 
system performance as well as functionality of each 
module. Finally, we have mapped the architecture onto a 
FPGA board, Xilinx Virtex-7 FPGA XC7V2000T [29]. 
The consumed resources are listed in Table 6. In the 
FPGA, the ASNoC runs at 100 MHz while the clock 
frequency of other modules varies from 50 to 100 MHz. 

Fig. 4 is an example that captures one of testbenches 
running in the board, displaying a H.265 video. 
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