
JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.17, NO.4, AUGUST, 2017 ISSN(Print) 1598-1657
https://doi.org/10.5573/JSTS.2017.17.4.505 ISSN(Online) 2233-4866

Manuscript received Jan. 17, 2017; accepted Jul. 5, 2017
1 SoC Design Research Group, Electronics and Telecommunications
Research Institute (ETRI), Daejeon, Korea
2 Corresponding author, Department of Electronic Engineering,
Myongji University, Korea
E-mail : spacelee@mju.ac.kr

Converting Interfaces on Application-specific
Network-on-chip

Kyuseung Han1, Jae-Jin Lee1, and Woojoo Lee2

Abstract—As mobile systems are performing various
functionality in the IoT (Internet of Things) era,
network-on-chip (NoC) plays a pivotal role to support
communication between the tens and in the future
potentially hundreds of interacting modules in
system-on-chips (SoCs). Owing to intensive research
efforts more than a decade, NoCs are now widely
adopted in various SoC designs. Especially, studies on
application-specific NoCs (ASNoCs) that consider the
heterogeneous nature of modern SoCs contribute a
significant share to use of NoCs in actual SoCs, i.e.,
ASNoC connects non-uniform processing units,
memory, and other intellectual properties (IPs) using
flexible router positions and communication paths.
Although it is not difficult to find the prior works on
ASNoC synthesis and optimization, little research has
addressed the issues how to convert different
protocols and data widths to make a NoC compatible
with various IPs. Thus, in this paper, we address
important issues on ASNoC implementation to
support and convert multiple interfaces. Based on the
in-depth discussions, we finally introduce our FPGA-
proven full-custom ASNoC.

Index Terms—Network-on-chip, NoC, application-
specific NoC, SoC, processor, computer architecture

I. INTRODUCTION

Drastic technological advances in the semiconductor
device fabrication have offered an opportunity to
implement mobile embedded systems on a single chip. It
has led to the advent of large application-specific
multiprocessor system-on-chips (MPSoCs) and general-
purpose chip-multiprocessors (CMPs), which are
advantageous to traditional single processors in terms of
performance, power consumption and footprint. In
MPSoCs and CMPs, on-chip communication plays a
vital role that cannot be achievable by traditional non-
scalable bus architecture. Instead, networks-on-chips
(NoCs) have been widely adopted as a \textit{de facto}
architecture in SoCs [1-3].

Intensive research has been performed on NoC designs
more than a decade to improve their performance and
energy efficiency or reduce area overhead. Many NoC
topologies such as mesh, torus, etc. have been presented
(to list a few, [4, 5]), various design parameters such as
operating frequency, bandwidth, etc. have been studied
as well [6, 7]. Significant research efforts also have been
put into developing routing strategy that aims to find the
optimal routing paths while the dead-lock free operation
should be guaranteed [8, 9].

While the most NoC works have focused on regular
NoC designs that consider uniformly distributed nodes
composed of homogenous processing cores and
memories, relatively fewer works have studied on
application-specific NoC (ASNoC) designs that contain
non-uniform processing units and flexible router
positions and communication paths [10-16]. A design
automation flow of ASNoC was introduced in [10, 11],
and a design method that considers wiring complexity of

506 KYUSEUNG HAN et al : CONVERTING INTERFACES ON APPLICATION-SPECIFIC NETWORK-ON-CHIP

the ASNoC during the topology synthesis process was
proposed in [1]. More recent works have focused on
optimal floorplanning of cores and placement of routers
in ASNoC [12-14] and heterogeneous networks [15, 16].
Due to the fact that intellectual properties (IPs) including
cores in a SoC are highly non-uniform, those works on
ASNoC designs have rapidly reached the industrial
practice. As a result, several commercial ASNoC
architectures are available in the market, and are
popularly adopted in modern SoCs. FlexNoC from
Arteries [17], NIC-301 from ARM [18] and SonicsGN
from SONICS [19] are the representative commercial
ASNoC architectures.

However, unfortunately none has addressed the issues
to convert protocols in ASNoC or network interface (NI)
development. IPs uses different protocols such as
advanced extensible interface (AXI), advanced high-
performance bus (AHB), advanced peripheral bus (APB),
etc. They also have different data widths. For example,
processors use 32 bit data while memories provide 128
bit access. A lot of papers including [20-23] present
novel NI implementations, but only some work [24, 25]
discusses the details when supporting the existing
protocols of AXI and OCP. Even in two papers, they
only pay attention to convert the protocols into their own
internal ones, but not to convert two existing protocols.
The conversions between the existing protocols seem
trivial and straightforward, but it is not actually. Thus in
this paper, we will reveal important conversion issues on
ASNoC implementation. After in-depth discussions, we
implemented one of possible candidates in verilog RTL
code and verified functionality by running H.265
CODEC on Xilinx FPGA.

II. BACKGROUND

This section offers a brief review of important
terminology and concepts relevant to ASNoC. For a
more comprehensive introduction, please take a look at
the ARM advanced microcontroller bus architecture
(AMBA) protocol manuals available online [26].

On-chip protocol. Not only which components or
blocks it houses in a SoC, but also how they interconnect
has become a overriding concern for SoC industry. As a
solution for the blocks to interface with each other, the
AMBA protocol has become the most widely used on-

chip interconnect specification in SoC designs. It
includes AXI, AHB and APB.

Transaction and transfer. Transaction and transfer
are the terms sometimes used as synonyms in fields. We
define one from another clearly in this paper as follows:
Transaction means a complete operation for a request,
while transfer stands for a data transmission in a certain
cycle. In other words, a transaction is a set of transfers.

Burst transaction and length. AXI and AHB protocol
support a number of consecutive data transfers in a
transaction, which is called burst. Length is the number
of data in a transaction, namely the number of transfers
in a transaction is determined by the length. Meanwhile,
a transaction with single data is called a single
transaction.

Data width, data size, and narrow transfer. Data
width means a maximum allowable data size, which
equals the number of physical wires for data transfer,
whereas data size is a size of actual transferring data.
Note that the data size is irrelevant to the length, and the
data size cannot be bigger than the data width. AXI and
AHB provide options to specify the data size, which is
called narrow transfer when the data size is smaller than
the data width.

Transaction ID (TID) and ordering. AXI protocol has
a TID field, which expresses dependencies among other
transactions. Although it is named as `ID', it is not a
unique value but it is a kind of a group ID. Transactions
assigned the same TID by the same master belong to the
same group, and they should be processed in the order as
generated. If transactions are issued by different master
IPs or get different TIDs from a master IP, they should
be processed exclusively, and thus can be processed in
parallel. In other words, a slave can switch the
completion order of them, which implies that a NoC
should take account for the ordering requirement of
transactions with same TID to guarantee the correctness
of the system.

III. ISSUES ON PROTOCOL CONVERSIONS

Given that IPs in a SoC adopt different on-chip
protocols, an ASNoC should support communication
between different protocols, namely protocol conversion
should be implemented. Indeed, it is not difficult to
implement such protocol conversion if the different

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.17, NO.4, AUGUST, 2017 507

protocols support the similar features (e.g., single
transaction or incremental burst of length 4), but
unfortunately they do not in reality. For example, AXI
provides continuous burst length, but AHB and APB do
not have such feature. Ditto for byte-enable feature. Fig.
1 shows the exclusive features belonging to the specific
protocols while common ones are omitted. Now then,
how to implement the protocol conversion? Before
getting into the details, we would like give a brief answer
that implementing a perfect protocol conversion
mechanism in a NoC is almost impossible (i.e.,
theoretically it may be possible, but impractical), but
cooperation with NoC designers and IP designers can
lead practicable solutions.

1. AXI → AHB

As seen in Fig. 1, the burst length of AXI can be an

arbitrary number (thus, continuous length), whereas
AHB supports only 4, 8, 16 lengths (thus, discrete
length). Let us now suppose that a master IP using AXI
transmits a burst with length 6 to a slave IP using AHB.
Then, a conversion problem happens. To resolve this
problem, there are two possible solutions. The first is that
the slave NI changes the burst to just one transaction by
exploiting an INCR burst of AHB (incrementing address,
unspecified number of transactions). The next is that the
slave NI splits the burst into multiple transactions of
length 1, 4, 8 or 16, and merges the responses after the
slave IP processes. Implementing the first is simple, but
the performance would not be guaranteed if a slave IP
like a memory controller is optimized for a certain fixed
length transactions (i.e., generally it is). In that case, the
later may result the better performance although the
additional hardware implementation is required. We
select the first solution in our ASNoC design. Table 1

wraps up the discussion.
Another prominent difference between AXI and AHB

is supporting byte-enable feature; AXI does, but AHB
does not. Supposed that a master IP using AXI sends a
burst transaction with a byte-enable signal, and the byte-
enable signal has more than one bit to be zero (a zero
byte-enable bit means the corresponding data must be
ignored), then a slave IP using AHB cannot process the
burst transactions directly. Therefore, we have to find a
solution of this problem.

Here is a conservative way to resolve the problem:
enforce a slave NI to deliver a transaction to a slave IP
only when the slave NI receives all transfers completely.

Only when all bytes are valid (i.e., there is no zero bit
inside the byte-enable signal), the transaction can be
treated as a burst. Otherwise, the transaction should be
divided into byte-level write ones. This way is similar to
the well-known telecommunications technique, store-
and-forward. Like what the store-and-forward technique
has a disadvantage of performance penalty, this
conservative way does the same. More precisely, let us
compare the communications of AXI to AXI and AXI to
AHB. The AXI to AXI exploits the pipelined
transmissions like the cut-through technique, which can
achieve the performance enhancement. However, the
AXI to AHB cannot use the pipelining method, resulting
in performance degradation.

The design complexity due to handling the zero bits
inside the byte-enable signal is another problem. As
aforementioned, a burst should be split into byte-level
transactions if there is any zero bit inside the byte-enable
signal. However, if the split transactions have all valid
byte-enable bits and they are consecutive, they can be
merged to a burst for the fast operation. For example, let
us suppose that there is a burst of length 8, and only the
4th transfer has two zero bits in the byte-enable. Then the
first three byte-level transactions can be transmitted as a
burst, the 5th to 8th transactions ditto. The 4th transfer has
to be transmitted as two byte-level transactions. Due to

Fig. 1. Supportive features in different protocols.

Table 1. Converting incompatible Burst Length between AXI
and AHB

 One transaction
of undefined length

Multiple transactions
of length 1,4,8,16

Add. logics - -

Comparison Maybe unoptimized for
salve IPs

Complex hardware
requirement

508 KYUSEUNG HAN et al : CONVERTING INTERFACES ON APPLICATION-SPECIFIC NETWORK-ON-CHIP

the fact that the zero bits in the byte-enable signal are
random, thus there are too many cases that a burst can be
split and re-merged, the above procedure may
substantially increase the design complexity.

Finally, we would like to suggest that SoC designers
deactivate the byte-enable feature for the AXI to AHB
communication. Then the NoC speculates there is no
byte-enable signals in all transactions, thus can exploit
the cut-through technique for all AXI to AHB
communications. Table 2 concludes discussion about the
byte-enable issue, and we offer both options.

2. AHB → AXI

The problem here is from the INCR burst feature that

is supportive in AHB but is not in AXI (i.e., again, AXI
cannot deal with the undefined burst length as seen in Fig.
1. To resolve this problem, the easiest solution with a
simple hardware support is to dismantle a burst
transaction and re-generate multiple single transactions.
However, this way may cause low performance of AXI
slave IPs that are optimized to the burst transactions, and
busy network traffic due to the number of transactions
increase.

On the other hands, we may hold benefit of using burst
transactions by packing a part of transfers as new
transactions of the fixed length. A master NI or a slave
NI has a certain number of buffers and generates a
transaction when the buffers are full or the burst ends.
This method extends the latency due to gathering while
the network traffic can be reduced. Depending on the
number of buffers, there are a trade-off on these effects.
Table 3 summarizes the answers of the question in this

subsection. In our ASNoC, because few IPs exploit the
INCR feature, we choose the first method, the simple one.

3. (AXI or AHB) → APB

As shown in Fig. 1, APB does not have any special

feature that AXI or AHB has. In other words, a master IP
has strict rules to use APB. Therefore, conversion issues
on AXI or AHB to APB is straightforward: a master IP
that transmit any transaction to an APB slave IP should
transmit transactions fit to APB requirement. A master IP
must not use the byte-enable. Because APB does not
support the narrow transfer, data widths of transactions
from a master IP should be same to the APB data width.

4. Other Protocols

We have discussed AMBA protocols since they are

most common in commercial uses, but there exist other
protocols such as wishbone [27] and TileLink [28]. It
seems inefficient to convert one by one but it may
require a common intermediate format that covers all
protocols, which is another challenge.

IV. ISSUES ON DATA WIDTH CONVERSIONS

Fig. 2. is an example of SoC architectures that our
ASNoC targets. This architecture is composed of ten
master IPs and five slave IPs. Later in Section V, we will

Table 2. Converting byte-enable from AXI to AHB

 Conservative Speculative
Byte Enable Considered Ignored
Similarity Store-and-forward Cut-through

Comparison Slow & complex Fast & simple
Correctness Guaranteed by NoC Considered by master IPs

Table 3. Ways to realize the AHB to AXI communication:
converting to multiple single transactions or multiple burst
transactions

 Multiple single Multiple burst
Add. logics - Collecting logics
Drawback Transaction increase Collecting overhead

Fig. 2. An example SoC architecture that our ASNoC targets.

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.17, NO.4, AUGUST, 2017 509

describe the details of this architecture, but now we
would like focus on the data widths of the IPs. As seen in
the figure, some IPs use 32 bit operation, whereas others
use 128 bit. To make the IPs using different data widths
communicate with each other, the data widths should be
converted. And, here comes the questions: how to
perform the data width conversion, and who takes charge
of it?

1. Narrow Slave Transaction

We call the case when a master IP's data width is

greater than a slave IP's the narrow slave transaction, i.e.,
this is different with a term, narrow transfer. In this case,
any data from a master IP must be split according to the
data with of a target slave IP. Splitting data causes the
length (the number of data in a transaction) increase in
proportion to data width of a master IP divided by that of
a slave IP. For instance, if a 128 bit master IP sends 8
data in a transaction to a 32 bit slave IP, the converted
length becomes 32 (= 8·128/32). This conversion process
may look simple. However, unfortunately, there is a
limitation of the maximum allowable length in AMBA
protocol (e.g., 16 in AXI protocol). So the 32 lengths
transaction resulting from the example should be divided
into two transactions, each of which has 16 lengths. Of
course, the split transactions should be merged to one
after they are processed in the slave IP.

If implementing master NIs to take charge of the
splitting & merging process, we have only concern to
make master NIs process their own transactions well. In
other words, a master NI splits a transaction from its
master IP and sends them to a target slave IPs. When the
split transactions are processed and returned to the
master NI, the master NI merges the results and sends it
back to the master IP. A problem that we are facing here
is to let the master NI correctly merge the results of the
split transactions to the results of the original transactions.
Let us suppose that there are many transactions given to
the master NI, each of which has own TID assigned by
the master IP. The master NI splits and transfers the
transactions in a way that each split transaction holds the
TID same to that of its parent transaction. Then, because
a slave IP can process the transactions with different TID
in any order, the returned results of split transactions may
not follow the original order that the transactions were

sent. For example, A and B transactions are divided into
A0~A3 and B0~B3, respectively. A master NI sends
transactions in the order A0-A1-A2-A3-B0-B1-B2-B3,
but they can be returned in the order A0-B0-B1-A1-B2-
B3-A2-A3. Therefore, the master NI has to reorder the
returned (out of order) results of the split transactions to
merge them.

To avoid overhead due to the reordering process and
accompanying hardware, we can design a master NI to
assign a new TID to the split transactions instead of
using the parent TID, i.e., the parent TID may be
recorded in the master NI for the future merging process.
By assigning the same TID to all the split transactions
(thereby a slave IP sequentially process the transactions),
the master NI expects the results will be returned in order.
This way, however, can cause the performance
degradation due to the low degree of parallelism.

Meanwhile, placing master NIs in charge of the
narrow slave transaction may inflict a loss of network
utilization. A network that supports a communication
between 128 bit master and slave IPs has a bandwidth of
128 bit. Converting a 128 bit transaction to four 32 bit
transactions results in only partial utilization of the 128
bit bandwidth, and multiple cycle transmission causes the
low network latency. The resulting multiple packets also
induce the network overhead. To overcome these issues,
we can design the slave NIs to perform the data width
conversion. Because the transactions are split and
merged in slave NIs after transmitting the network, the
network can be fully utilized.

However, merging process may become more
complicated than the previous master NI-centered
method. A slave NI should take care of (the number of
master) ´ (the number of TIDs in one master) TIDs at
the same time, which may require the more complex
reordering process. Similar to what the master NIs assign
their own TIDs to the transactions to skip the reordering
process, we can adopt the way that a slave NI gives a
(same) new TID to all transactions. In our ASNoC
implementation, we choose this way. The discussion
about the narrow slave transaction is summarized in
Table 4.

2. Narrow Slave Transactions of a Wrapping Burst

A wrapping burst is similar to an incrementing burst,

510 KYUSEUNG HAN et al : CONVERTING INTERFACES ON APPLICATION-SPECIFIC NETWORK-ON-CHIP

except that the address wraps around to a lower address
if the address reaches the predefined limit [26]. Because
the data width conversion may change the sequence of
addresses, the resulting split transactions may become no
longer the wrapping bursts like Fig. 3. In the figure, a 64
bit master sends a wrapping burst of length 16, which
will be transformed to 32 data in a 32 bit slave. Supposed
that a slave NI divides it into two 16 data,
0x08\sim0x44 and 0x48\sim0x04, since the 32 data
exceeds the possible length. The former part can be
expressed as an incrementing burst of 16. However,
unfortunately the later part cannot be any burst since the
address of the wrapping burst of length 16 starting from
0x48 is wrapped to 0x40 after 0x78.

The easiest way maybe is converting each burst to
multiple single transactions. It makes a design quite
simple, but the number of transactions are skyrocketing
to the length, which may cause significant overhead to
network and/or a slave. One way to increase the
efficiency is that first we split a transaction at the
wrapping point, which corresponds to the red line in Fig.
3 and then adopt the approaches in Section IV-A as the
second step. This solution may reduce the performance
overhead due to the increase of transactions, but the
required hardware may become complicated. Another
possible solution is that a master NI or a slave NI issues a
wrapping burst as an incrementing burst and then
corrects a sequence by reordering the returned data
autonomously. It is the most efficient way in terms of
network traffic, but it may cause latency increase and
design complexity. Table 5 sums up this subsection.

3. Wide Slave Transactions

There exists an opposite case to the narrow slave

transaction whereby data width of a slave IP is greater
than that of a master IP. We call this wide slave
transaction. If a target slave IP uses AXI or AHB that
supports the narrow transfer, slave NIs just send their
small data width transactions to the slave IP (no problem
occurs). However, a slave IP using APB that does not
support the narrow transfer does not know what to do
with the partial data. For example, if a master IP requests
a 16 bit write operation to a slave IP using 32 bit APB,
the slave IP cannot perform the write operation directly.
Instead, it may have to go through several steps that read
all the 32 bit data for the target address first, change the
last 16 bit of the data to the requested ones, and write the
32 bit data to the address. This solution looks plausible,
but the fact that APB slave IPs carry out various
operations (e.g., specific register controls) as well as the
read/write operations, the presented solution may incur
unexpected malfunctions. Consequently, there may not
exist such a perfect solution of the wide slave
transactions for ABP.

In our ASNoC, we implement APB slave IPs to
perform read/write regardless of the original data widths
of transactions.

Fig. 3. An example of the broken wrapping burst in the narrow
slave transactions.

Table 4. Splitting & Merging for Narrow Slave Transactions

 By MNI By SNI
 TIDs from Master IP A TID from a MNI Concatenated TIDs A TID from a SNI

MNI Reordering is required - -
Switch Overhead due to more transactions, Partial utilization Full utilization

SNI - Low DoP Reordering is required -

 Table 5. Handling the Narrow Slave Transactions of Wrapping

Burst

Multiple burst
 Multiple

single Sequential Reordered
Number of

Transactions
Many

(= Length) Low Lowest

Comparison Slow &
complex

Fast &
complex

Fastest &
Most complex

Table 6. The ASNoC resource consumption in the FPGA.
(value) is the total resource consumption

Logic LUTs
35,450 (665,814)

FFs
50,248 (457,910)

LUTRAMS
990 (4,936)

SRLs
48 (1,439)

RAMB36
0 (485)

RAMB18
0 (367)

DSP48
0 (1,129)

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.17, NO.4, AUGUST, 2017 511

V. IMPLEMENTATION

We have implemented our ASNoC in synthesizable
verilog RTL codes. To verify the functional correctness
of our ASNoC, we have designed a platform architecture
shown in Fig. 2 and applied our ASNoC to it. The
architecture contains ten master IPs including a quad-
core processor, a H.265 codec, video input and output
modules, etc. and five slave IPs including memories,
JTAG and USB, etc. The IPs use AXI, AHB and APB
protocols. The data width of the IPs also varies. The
network consists of three switches in order to link the IPs.
Since each IP has its own frequency, master NIs and
slave NIs use asynchronous FIFOs for clock domain
crossing. The FIFOs are also inserted between switches if
they runs at different clocks.

The processors can use DDR or SDRAM as a main
memory, and controls other masters through APB
bridges where slave ports of masters are connected. The
video input module periodically writes raw images from
a camera into memories. On the contrary, the video
output module reads images from memories and displays
them on a monitor through a HDMI cable. The H.265
codec operates by collaborating with these two video
modules persistently.

We have developed several testbenches to check the
system performance as well as functionality of each
module. Finally, we have mapped the architecture onto a
FPGA board, Xilinx Virtex-7 FPGA XC7V2000T [29].
The consumed resources are listed in Table 6. In the
FPGA, the ASNoC runs at 100 MHz while the clock
frequency of other modules varies from 50 to 100 MHz.

Fig. 4 is an example that captures one of testbenches
running in the board, displaying a H.265 video.

ACKNOWLEDGMENTS

This research is partially supported by the IT R&D
program of MSIP/IITP (2016-0-00088, Development of
Intelligent Semiconductor Common Platform Technology
for Smart Devices), and Basic Science Research Program
through the National Research Foundation of Korea
(NRF) funded by the Ministry of Education
(2017R1D1A1 B03027911).

REFERENCES

[1] S. Murali et al., “Designing Application-specific
Networks on Chips with Floorplan Information,” in
Proc. of the Int’l Conf. on Computer-Aided Design,
pp. 355–362, 2006.

[2] M. Dall’Osso et al., “Xpipes: A latency insensitive
parameter- ized network-on-chip architecture for
multi-processor SoCs,” in Proc. of the IEEE Int’l
Conf. on Computer Design, pp. 45–48, 2012.

[3] D. Zhu et al., “TAPP: Temperature-aware
pplication mapping for NoC-based many-core
processors,” in Proc. of the Int’l Conf.. on Design,
Automation & Test in Europe, pp. 1241–1244,
2015.

[4] W. Dally and B. Towles, Principles and Practices
of Interconnection Networks. Morgan Kaufmann
Publishers Inc., 2003.

[5] P. P. Pande et al., “Performance evaluation and
design trade-offs for network-on-chip interconnect
architectures,” IEEE Trans. Comput., vol. 54, pp.
1025–1040, Aug 2005.

[6] U. Y. Ogras, J. Hu and R. Marculescu, “Key
research problems in NoC design: A holistic
perspective,” in Proc. of the Int’l Conf. on
Hardware/Software Codesign and System
Synthesis, pp. 69–74, 2005.

[7] A. B. Kahng et al., “ORION 2.0: A fast and
accurate noc power and area model for early-stage
design space exploration,” in Proceedings of the
Int’l Conference on Design, Automation & Test in
Europe, pp. 423–428, 2009.

[8] J. Hu and R. Marculescu, “Energy- and

Fig. 4. An example of our ASNoC demonstrations: it is
implemented on a Virtex-7 FPGA board to run the H.265
codec..

512 KYUSEUNG HAN et al : CONVERTING INTERFACES ON APPLICATION-SPECIFIC NETWORK-ON-CHIP

performance-aware mapping for regular noc
architectures,” IEEE Trans. on Computer-Aided
Design of Integrated Circuits and Systems, vol. 24,
no. 4, pp. 551–562, 2005.

[9] M. Palesi et al., “A methodology for design of
application specific deadlock-free routing
algorithms for noc systems,” in Pro- ceedings of
the Int’l Conf. on Hardware/Software Codesign and
System Synthesis, pp. 142–147, 2006.

[10] K. Han, J. J. Lee, J. Lee, W. Lee, and M. Pedram,
"TEI-NoC: Optimizing Ultra-Low Power NoCs
Exploiting the Temperature Effect Inversion," in
IEEE Trans. on Computer-Aided Design of
Integrated Circuits and Systems, doi: 10.1109/
TCAD.2017.2693269

[11] K. Goossens et al., “A Design Flow for
Application-Specific Networks on Chip with
Guaranteed Performance to Accelerate SoC Design
and Verification,” in Proc. of the Interna- tional
Conference on Design, Automation & Test in
Europe, pp. 1182–1187, 2005.

[12] L. Benini, “Application Specific NoC Design,” in
Proc. of the Int’l Conf. on Design, Automation &
Test in Europe, pp. 1–5, 2006.

[13] S. Kwon, S. Pasricha and J. Cho, “POSEIDON: A
framework for application-specific network-on-
chip synthesis for heterogeneous chip multi-
processors,” in Proc. of the Int’l Symp. on Quality
Electronic Design, pp. 1–7, 2011.

[14] K. S. M. Li, “CusNoC: Fast full-chip custom NoC
generation,” IEEE Transactions on Very Large
Scale Integr. Sys., vol. 21, pp. 692–705, April 2013.

[15] J. Soumya and S. Chattopadhyay, “Application-
specific network-on-chip synthesis with flexible
router placement,” J. Syst. Archit., vol. 59, pp.
361–371, Aug 2013.

[16] B. Grot et al., “Kilo-NOC: A heterogeneous
network-on-chip architecture for scalability and
service guarantees,” in Proceed- ings of the Int’l
Symp. on Comp. Arch., pp. 401–412, 2011.

[17] A. K. Mishra, O. Mutlu and C. R. Das, “A
heterogeneous mul- tiple network-on-chip design:
An application-aware approach,” in Proc. of the
Design Automation Conf., pp. 36:1–36:10, 2013.

[18] Arteris, “http://www.arteris.com/flexnoc.”
[19] ARM, “http://www.arm.com/products/system-ip/

interconnect/corelink-nic-family.php.”

[20] Sonics, “http://sonicsinc.com.”
[21] A. Radulescu et al., “An efficient on-chip network

interface offering guaranteed services, shared-
memory abstraction, and flexible network
configuration,” in Proc. of the Int’l Conf. on
Design, Auto. & Test, vol. 2, pp. 878–883, 2004.

[22] K. Goossens, J. Dielissen and A. Radulescu,
“Aethereal network on chip: concepts, architectures,
and implementations,” IEEE Design & Test of
Computers, vol. 22, pp. 414–421, Sept 2005.

[23] J. Sparsø, E. Kasapaki and M. Schoeberl, “An area-
efficient net- work interface for a tdm-based
network-on-chip,” in Proceed- ings of the Int’l
Conf. on Design, Auto. & Test in Europe, pp.
1044–1047, 2013.

[24] A. Radulescu et al., “An efficient on-chip ni
offering guaran- teed services, shared-memory
abstraction, and flexible network configuration,”
IEEE Trans. on Computer-Aided Design of Integr.
Circuits and Systems, vol. 24, pp. 4–17, Jan 2005.

[25] X. Yang et al., “Nisar: An axi compliant on-chip ni
architecture offering transaction reordering
processing,” in Proc. of the Int’l Conf. on ASIC, pp.
890–893, 2007.

[26] T. Bjerregaard et al., “An ocp compliant network
adapter for gals-based soc design using the mango
network-on-chip,” in Proceedings of the Int’l Symp.
on System-on- Chip, pp. 171–174, 2005.

[27] ARM,“https://www.arm.com/products/system-ip/
amba-specifications.”

[28] Wishbone, “https://opencores.org/opencores,wishbone.”
[29] TileLink,“http://bar.eecs.berkeley.edu/projects/201

4-tilelink.html.”
[30] XILINX, “https://www.xilinx.com/products/boards-

and-kits/ek-v7-vc707-g.html.”

Kyuseung Han received the B.S.
and Ph.D. degrees in Electrical
Engineering and Computer Science
from Seoul National University,
Seoul, Korea, in 2008 and 2013.
From 2014, he has been working at
Electronics and Telecommunications

Research Institute, Daejeon, Korea. His research interests
include reconfigurable architecture, network-on-chip,
aand low power embedded systems.

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.17, NO.4, AUGUST, 2017 513

Jae-Jin Lee received the B.S., M.S.,
and Ph.D. degrees in Computer
Engineering from Chungbuk National
University in 2000, 2003, and 2007,
respectively. He is a group leader of
the SoC Design Research Group at
Electronics and Telecommunications

Research Institute. His research interests include
processor and compiler designs in ultra-low power
embedded systems..

Woojoo Lee received the B.S.
degrees from the Department of
Electrical Engineering, Seoul National
University, Seoul, Korea in 2007,
and the M.S. and Ph.D. degrees in
Electrical Engineering from Univer-
sity of Southern California, Los

Angeles, CA, in 2010 and 2015. He worked at
Electronics and Telecommunications Research Institute
as a senior researcher in SoC Design Research group,
and is currently an assistant professor with the
Department of Electronic Engineering, Myongji
University. His research interest includes ultra-low
power VLSI designs, SoC designs, embedded system
designs, and system-level power and thermal
management.

