DOI QR코드

DOI QR Code

Structural Design of Coupled RC Structural Wall Considering Plastic Behavior

소성거동을 고려한 병렬 RC 구조벽체시스템의 설계

  • 유승윤 (연우건축구조기술사사무소) ;
  • 엄태성 (단국대학교 건축공학과) ;
  • 강수민 (충북대학교 건축공학과)
  • Received : 2017.06.27
  • Accepted : 2017.07.21
  • Published : 2017.08.31

Abstract

Reinforced concrete(RC) structural walls are major lateral load-resisting structural member in building structures. Generally these RC structural walls are coupled with each other by the coupling beams and slabs, and therefore they behave as RC coupled structural wall system. In the design of these coupled structural wall systems, member forces are calculated using elastic structural analysis. These elastic analysis methodologies for the design of coupled structural wall system was not reasonable because it can not consider their ultimate behavior and assure economic feasibility. Performance based design and moment redistribution method to solve these problems is regarded as a reasonable alternative design method for RC coupled structural wall system. However, it is not verified under various design parameters. In this study, nonlinear analysis of RC coupled structural wall system was performed according to various design parameters such as reinforcement ratio, ultimate concrete strain and wall height. Based on analysis results, design considerations for coupled RC structural wall system was proposed.

본 연구에서는 다양한 변수를 갖는 병렬 RC 구조벽체시스템에 대한 성능기반설계의 타당성과 이에 따른 모멘트 재분배 개념의 적용성을 분석하기 위해 횡력을 지지하는 병렬 RC 구조벽체시스템에 대한 비선형해석을 수행하였다. 설계변수(철근비, 콘크리트변형률, 벽체높이)가 병렬 RC 구조벽체시스템의 거동에 미치는 영향을 분석하였으며 이를 기반으로 병렬 RC 구조벽체시스템의 성능기반 설계를 위한 고려사항을 제안하였다. 비선형해석 결과, 병렬 RC 구조벽체시스템 성능기반 설계와 모멘트 재분배 개념의 적용을 위해서는 연결보의 항복여부에 대한 고려가 필요한 것으로 나타났다. 높은 벽체의 경우, 연결보가 항복하지 않고 탄성 상태로 거동할 수 있기 때문에 고층 병렬 RC 구조벽체시스템에 대해 성능기반 설계 및 모멘트 재분배 개념을 적용하기 위해서는 벽체에 높은 수준의 소성변형능력을 필요로 하며, 이를 위해 벽체 압축단부에 횡보강을 필수적으로 실시해야 한다.

Keywords

References

  1. ACI (2014) Building Code Requirements for Structural Concrete, ACI 318-14 and ACI 318R-14, Farmington Hills, Michigan, USA.
  2. Architectural Institute of Korea (2016) Korean Building Code 2016.
  3. Bentz, E.C., Vecchio, F.J., Collins, M.P. (2006) Simplified Modified Compression Field Theory for Calculating Shear Strength of Reinforced Concrete Elements, ACI Struct. J., 103(4), pp. 614-624.
  4. Choi, H.C., Lee, Y.J., Kim, C.-K. (2014) Optimization of Quantity of Core Walls in Tall Buildings with StrAuto Analysis, J. Comput. Struct. Eng. Inst. Korea, 27(5), pp.451-458, https://doi.org/10.7734/COSEIK.2014.27.5.451
  5. Kabeyasawa, T. (1984) Discussion of Dynamic Response System, US-Japan Cooperative Research on R/C Full-Scale Building Test, Part5: Proc. 8th of WCEE.
  6. Kang, S.M., Yu, S.-Y., Eom, T.-S., Kim, J.-Y., Kim, D.-K. (2015) Optimal Design of High-rise RC Coupled Structural Walls under Lateral Load., IMETI2015, Taiwan, Oct. 31.
  7. Kent, D.C., Park, R. (1971) Flexural- Members with Confined Concrete, Proceeding, ASCE, 97(ST7), pp.1969-1990.
  8. Kim, D.-K., Eom, T.S., Lim, Y.J., Lee, H.S., Park, H.G. (2011) Macro Model for Nonlinear Analysis of Reinforced Concrete Walls, J. Korea Concr. Inst., 23(5), pp.569-579. https://doi.org/10.4334/JKCI.2011.23.5.569
  9. Kim, S.-W., Jang, S.-J., Yun, H.-D., Seo, S.-Y., Chun, Y.-S. (2017) Effect of Aspect Ratio and Diagonal Reinforcement on Shear Performance of Concrete Coupling Beams Reinforced with High-Strength Steel Bars, J. Korea Concr. Inst. 29(1), pp.43-51. https://doi.org/10.4334/JKCI.2017.29.1.043
  10. Kwon, H.W., Jeon, Y.R., Lee, K.H., Shin, M.S., Han, S.W. (2013) Cyclic Behavior of High-Performance Fiber-Reinforced Cement Composite Coupling Beam Having Diagonal Reinforcement, J. Korea Concr. Inst., 25(6), pp.649-656. https://doi.org/10.4334/JKCI.2013.25.6.649
  11. Linde, P., Bachmann, H. (1994) Dynamic Modeling and Design of Earthquake-Resistant Walls, EESD, I23, pp.1331-135.
  12. Menegotto, M., Pinto, P.E. (1973) Method of Anaysis for Cyclically Loaded Reinforced Concrete Plane Frames Including Changes in Geometry and Non-elastic behavior of Elements under Combined Normal Force and Bending, Proc., IABSE Symp. of Resistance and Ultimate Deformability of Structures Acted on by Well-Defined Repeated Loads, IABSE, Libson, Portugal, 13 pp.15-22.
  13. Milev, J. (1996) Two Dimensional Analytical Model of Reinforced Concrete Shear Walls, Proc. 11th of WCEE, Paper, No.320.
  14. Oesterle, R.G., Aristizabal-Ochoa, J.D., Shiu, K.N., Corley, W.G. (1984) Web Crushing of Reinforced Concrete Structural Walls, ACI Struct. J.. 81(3), pp.231-241.
  15. Opensees (2006), http://opensees.berkeley.edu.
  16. Orakcal, K., Wallace, J.W., Conte, J.P. (2004) Flexural Modeling of Reinforced Concrete Walls-Model Attribute, ACI Struct. J., 101(5), pp.688-698.
  17. Paulay, T., Priestley, M.J.N. (1992) Seismic Design of Reinforced Concrete and Masonry Buildings, John Wiley and Sons, Inc, New York, USA.
  18. Taranath, B.S. (2009) Reinforced Concrete Design of Tall Buildings, CRC Press,
  19. Vecchio, F.J., Collins, M.P. (1986) The Modified Compression Field Theory for Reinforced Concrete Elements Subjected to Shear, ACI Struct. J., 83(22), pp.219-231.
  20. Vulcano, A., Bertero, V. (1987) Analytical Model for Predicating the Lateral Response of RC Shear Wall, Evaluation of Their Reliability, EERC, Report No. UBC/EERC-87/19.