DOI QR코드

DOI QR Code

마이크로채널에서의 비등열전달 현상에 관한 연구

Study on Boiling Heat Transfer Phenomenon in Micro-channels

  • 정남균 (인하공업전문대학 기계과)
  • Jeong, Namgyun (Dept. of Mechanical Engineering, Inha Technical College)
  • 투고 : 2017.03.15
  • 심사 : 2017.06.11
  • 발행 : 2017.09.01

초록

최근 기기들이 소형화 되고 이에 따른 효율적인 열방출 방안이 필요해지면서, 마이크로채널에서의 비등에 관한 연구가 주목받고 있다. 그러나 마이크로채널의 경우는 마찰계수 및 열전달 특성이 매크로스케일의 경우와 달라 기존에 매크로스케일에서 도출된 상관식과 비교 시에 큰 오차를 발생시킨다. 또한, 채널 내에서의 비등현상은 메커니즘의 복잡함으로 인하여 실제 문제 적용에 있어서 실험적, 이론적인 방법만으로 접근하는데 무리가 있다. 따라서 이러한 방법들과 더불어 수치해석적인 연구방법이 보완되어져야 하는데, 그동안 수행되어진 연구들은 매크로채널에서의 연구가 대부분이다. 본 연구는 최근 CFD 방법의 대안으로 제시된 격자 볼츠만 방법을 마이크로채널에서의 비등현상을 모의하는데 적용해보았으며, 마이크로채널 내에서의 기포 성장과정에 대하여 예측해 보았다.

Recently, efficient heat dissipation has become necessary because of the miniaturization of devices, and research on boiling on micro-channels has attracted attention. However, in the case of micro-channels, the friction coefficient and heat transfer characteristics are different from those in macro-channels. This leads to large errors in the micro scale results, when compared to correlations derived from the macro scale. In addition, due to the complexity of the mechanism, the boiling phenomenon in micro-channels cannot be approached only by experimental and theoretical methods. Therefore, numerical methods should be utilized as well, to supplement these methods. However, most numerical studies have been conducted on macro-channels. In this study, we applied the lattice Boltzmann method, proposed as an alternative numerical tool to simulate the boiling phenomenon in the micro-channel, and predicted the bubble growth process in the channel.

키워드

참고문헌

  1. Kandlikar, S. G., 2004, "Heat Transfer Mechanisms During Flow Boiling in Microchannels," J. Heat Transfer, Vol. 126, pp. 8-16. https://doi.org/10.1115/1.1643090
  2. Tran, T. N., Wambsganss, M. W. and France, D. M., 1996, "Small Circular- and Rectangular-channel Boiling with Two Refrigerants," Int. J. Multiphase Flow, Vol. 22, pp. 485-498. https://doi.org/10.1016/0301-9322(96)00002-X
  3. Kew, P. A. and Cornwell, K., 1997, "Correlation for the Prediction of Boiling Heat Transfer in Small-diameter Channels," Applied Thermal Engineering, Vol. 17, pp. 705-715. https://doi.org/10.1016/S1359-4311(96)00071-3
  4. Jiang, L., Wong, M. and Zohar, Y., 2001, "Forced Convection Boling in a Microchannel Heat Sink," J. Microelectromechanical Systems, Vol. 10, No. 1, pp. 80-87. https://doi.org/10.1109/84.911095
  5. Thome, J. R., Dupont, V. and Jacobi, A. M., 2004, "Heat Transfer Model for Evaporation in Micro- channels. Par I: Presentation of the Model," Int. J. Heat and Mass Transfer, Vol. 47, pp. 3375-3385. https://doi.org/10.1016/j.ijheatmasstransfer.2004.01.006
  6. Lim, T. W., You, S. S., Choi, H. S. and Kim, D. H., 2011, "Boiling Heat Transfer Characteristics of Deionized Water in Microchannel," Journal of the Korean Soc. Mar. Eng., Vol. 35, No. 6, pp. 750-756. https://doi.org/10.5916/jkosme.2011.35.6.750
  7. Mukherjee, A., Kandlkikar S. G. and Edel, Z. J., 2011, "Numerical Study of Bubble Growth and Wall Heat Transfer during Flow Boiling in a Microchannel," Int. J. Heat and Mass Transfer, Vol. 54, pp. 3702-3718. https://doi.org/10.1016/j.ijheatmasstransfer.2011.01.030
  8. Magnini, m., Pulvirenti, B. and Thome, J. R., 2013, "Numerical Investigation of Hydrodynamics and Heat Transfer of Elongated Bubbles during Flow Boiling in a Microchannel," Int. J. Heat and Mass Transfer, Vol. 59, pp. 451-471. https://doi.org/10.1016/j.ijheatmasstransfer.2012.12.010
  9. Ryu, S. and Ko, S., 2011, "A Comparative Study of Lattice Bolztmann and Volume of Fluid Method for Two-dimensional Multiphase Flows," Nuc. Eng. and Technol., Vol. 44, No. 6, pp. 623-638. https://doi.org/10.5516/NET.02.2011.025
  10. Ryu, S. and Ko, S., 2012, "Direct Numerical Simulation of Nucleate Pool Boiling using a Two-dimensional Lattice Boltzmann Method," Nucr. Eng. and Des., Vol. 248, pp. 248-262. https://doi.org/10.1016/j.nucengdes.2012.03.031
  11. Chen, S. and Doolen, G. D., 1998, "Lattice Boltzmann Method for Fluid Flows," Ann. Rev. Fluid Mech., Vol. 30, pp. 329-364. https://doi.org/10.1146/annurev.fluid.30.1.329
  12. Succi, S., 2001, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond, Oxford University Press, Oxford.
  13. Qian, Y., d'Humieres, D. and Lallemand, P., 1992, "Recovery of Navier-Stokes Equations using a Lattice-gas Boltzmann Method," Europhys. Lett., Vol. 17, pp. 479-484. https://doi.org/10.1209/0295-5075/17/6/001
  14. Zheng, H. W., Shu, C. and Chew, Y. T., 2006, "A Lattice Bolztmann Model for Multiphase Flows with Large Density Ratio," J. Comp. Phys., Vol. 218, pp. 353-371. https://doi.org/10.1016/j.jcp.2006.02.015
  15. Inamuro, T., Ogata, T., Tajima, S. and Konishi, N., 2004, "A Lattice Boltzmann Method for Incompressible Two-Phase Flows with Large Density Differences," J. Comp. Phys., Vol. 198, pp. 628-644. https://doi.org/10.1016/j.jcp.2004.01.019
  16. Dong, Z., Li, W. and Song, Y., 2009, "Lattice Boltzmann Simulation of Growth and Deformation for a Rising Vapor Bubble Through Superheated Liquid," Num. Heat Transfer, part A, Vol. 55, pp. 381-400. https://doi.org/10.1080/10407780902720718
  17. Mikic, B. B., Rohsenow, W. M. and Griffith, P., 1970, "On Bubble Growth Rates," Int. J. Heat Mass Transfer, Vol. 13, pp. 657-666. https://doi.org/10.1016/0017-9310(70)90040-2
  18. Lee, S. Y., Kim, B. J. and Kim, M. H., 1993, Two-Phase Flow Heat Transfer, Daeyoungsa.