DOI QR코드

DOI QR Code

Outer Membrane Vesicles Derived from Salmonella Enteritidis Protect against the Virulent Wild-Type Strain Infection in a Mouse Model

  • Liu, Qiong (Department of Medical Microbiology, School of Medicine, Nanchang University) ;
  • Yi, Jie (Institute of Preventive Veterinary Medicine, Sichuan Agricultural University) ;
  • Liang, Kang (Institute of Preventive Veterinary Medicine, Sichuan Agricultural University) ;
  • Zhang, Xiangmin (Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy/Health Sciences, Wayne State University) ;
  • Liu, Qing (College of Animal Science and Technology, Southwest University)
  • Received : 2017.05.10
  • Accepted : 2017.05.24
  • Published : 2017.08.28

Abstract

Foodborne contamination and salmonellosis caused by Salmonella Enteritidis (S. Enteritidis) are a significant threat to human health and poultry enterprises. Outer membrane vesicles (OMVs), which are naturally secreted by gram-negative bacteria, could be a good vaccine option because they have many biologically active substances, including lipopolysaccharides (LPS), outer membrane proteins (OMPs), and phospholipids, as well as periplasmic components. In the present study, we purified OMVs derived from S. Enteritidis and analyzed their characteristics through silver staining and sodium dodecyl sulfate polyacrylamide gel electrophoresis. In total, 108 proteins were identified in S. Enteritidis OMVs through liquid chromatography tandem mass spectrometry analysis, and OMPs, periplasmic proteins, and extracellular proteins (49.9% of total proteins) were found to be enriched in the OMVs compared with bacterial cells. Furthermore, native OMVs used in immunizations by either the intranasal route or the intraperitoneal route could elicit significant humoral and mucosal immune responses and provide strong protective efficiency against a lethal dose (~100-fold $LD_{50}$) of the wild-type S. Enteritidis infection. These results indicated that S. Enteritidis OMVs might be an ideal vaccine strategy for preventing S. Enteritidis diseases.

Keywords

References

  1. Desmidt M, Ducatelle R, Haesebrouck F. 1997. Pathogenesis of Salmonella Enteritidis phage type four after experimental infection of young chickens. Vet. Microbiol. 56: 99-109. https://doi.org/10.1016/S0378-1135(96)01350-8
  2. Guard-Petter J. 2001. The chicken, the egg and Salmonella enteritidis. Environ. Microbiol. 3: 421-430. https://doi.org/10.1046/j.1462-2920.2001.00213.x
  3. Chai S J, W hite P L, Lathrop S L, S olghan SM, Medu s C, McGlinchey BM, et al. 2012. Salmonella enterica serotype Enteritidis: increasing incidence of domestically acquired infections. Clin. Infect. Dis. 54: S488-S497. https://doi.org/10.1093/cid/cis231
  4. Newell DG, Koopmans M, Verhoef L, Duizer E, Aidara-Kane A, Sprong H, et al. 2010. Food-borne diseases-the challenges of 20 years ago still persist while new ones continue to emerge. Int. J. Food Microbiol. 139: S3-S15. https://doi.org/10.1016/j.ijfoodmicro.2010.01.021
  5. Majowicz SE, Musto J, Scallan E, Angulo FJ, Kirk M, O'Brien SJ, et al. 2010. The global burden of nontyphoidal Salmonella gastroenteritis. Clin. Infect. Dis. 50: 882-889. https://doi.org/10.1086/650733
  6. Van Immerseel F, De Buck J, Pasmans F, Bohez L, Boyen F, Haesebrouck F, et al. 2004. Intermittent long-term shedding and induction of carrier birds after infection of chickens early posthatch with a low or high dose of Salmonella Enteritidis. Poult. Sci. 83: 1911-1916. https://doi.org/10.1093/ps/83.11.1911
  7. Seo KH, Holt PS, Gast RK, Hofacre CL. 2000. Combined effect of antibiotic and competitive exclusion treatment on Salmonella Enteritidis fecal shedding in molted laying hens. J. Food Protect. 63: 545-548. https://doi.org/10.4315/0362-028X-63.4.545
  8. Molbak K, Gerner-Smidt P, Wegener HC. 2002. Increasing quinolone resistance in Salmonella enterica serotype Enteritidis. Emerg. Infect. Dis. 8: 514-515. https://doi.org/10.3201/eid0805.010288
  9. Threlfall EJ. 2002. Antimicrobial drug resistance in Salmonella: problems and perspectives in food-and waterborne infections. FEMS Microbiol. Rev. 26: 141-148. https://doi.org/10.1111/j.1574-6976.2002.tb00606.x
  10. Mastroeni P, Chabalgoity J, Dunstan S, Maskell D, Dougan G. 2001. Salmonella: immune responses and vaccines. Vet. J. 161: 132-164. https://doi.org/10.1053/tvjl.2000.0502
  11. De Cort W, Geeraerts S, Balan V, Elroy M, Haesebrouck F, Ducatelle R, et al. 2013. A Salmonella Enteritidis hilAssrAfliG deletion mutant is a safe live vaccine strain that confers protection against colonization by Salmonella Enteritidis in broilers. Vaccine 31: 5104-5110. https://doi.org/10.1016/j.vaccine.2013.08.042
  12. Toyota-Hanatani Y, Kyoumoto Y, Baba E, Ekawa T, Ohta H, Tani H, et al. 2009. Importance of subunit vaccine antigen of major Fli C antigenic site of Salmonella Enteritidis II: a challenge trial. Vaccine 27: 1680-1684. https://doi.org/10.1016/j.vaccine.2009.01.024
  13. Hormaeche CE, Mastroeni P, Harrison JA, de Hormaeche RD, Svenson S, Stocker BA. 1996. Protection against oral challenge three months after i.v. immunization of BALBc mice with live Aro Salmonella typhimurium and Salmonella enteritidis vaccines is serotype (species)-dependent and only partially determined by the main LPS O antigen. Vaccine 14: 251-259. https://doi.org/10.1016/0264-410X(95)00249-Z
  14. Okamura M, Lillehoj HS, Raybourne RB, Babu U, Heckert R. 2003. Antigen-specific lymphocyte proliferation and interleukin production in chickens immunized with killed Salmonella enteritidis vaccine or experimental subunit vaccines. Avian Dis. 47: 1331-1338. https://doi.org/10.1637/6096
  15. Bonnington KE, Kuehn MJ. 2014. Protein selection and export via outer membrane vesicles. Biochim. Biophys. Acta 1843: 1612-1619. https://doi.org/10.1016/j.bbamcr.2013.12.011
  16. Deatherage BL, Cookson BT. 2012. Membrane vesicle release in bacteria, eukaryotes, and archaea: a conserved yet underappreciated aspect of microbial life. Infect. Immun. 80: 1948-1957. https://doi.org/10.1128/IAI.06014-11
  17. Ellis TN, Kuehn MJ. 2010. Virulence and immunomodulatory roles of bacterial outer membrane vesicles. Microbiol. Mol. Biol. Rev. 74: 81-94. https://doi.org/10.1128/MMBR.00031-09
  18. Kulkarni HM, Jagannadham MV. 2014. Biogenesis and multifaceted roles of outer membrane vesicles from gramnegative bacteria. Microbiology 160: 2109-2121. https://doi.org/10.1099/mic.0.079400-0
  19. Bomberger JM, MacEachran DP, Coutermarsh BA, Ye S, O'Toole GA, Stanton BA. 2009. Long-distance delivery of bacterial virulence factors by Pseudomonas aeruginosa outer membrane vesicles. PLoS Pathog. 5: e1000382. https://doi.org/10.1371/journal.ppat.1000382
  20. Yonezawa H, Osaki T, Woo T, Kurata S, Zaman C, Hojo F, et al. 2011. Analysis of outer membrane vesicle protein involved in biofilm formation of Helicobacter pylori. Anaerobe 17: 388-390. https://doi.org/10.1016/j.anaerobe.2011.03.020
  21. Elhenawy W, Debelyy MO, Feldman MF. 2014. Preferential packing of acidic glycosidases and proteases into Bacteroides outer membrane vesicles. mBio 5: e00909-00914.
  22. Collins BS. 2011. Gram-negative outer membrane vesicles in vaccine development. Discov. Med. 12: 7-15.
  23. McConnell MJ, Rumbo C, Bou G, Pachon J. 2011. Outer membrane vesicles as an acellular vaccine against Acinetobacter baumannii. Vaccine 29: 5705-5710. https://doi.org/10.1016/j.vaccine.2011.06.001
  24. Petersen H, Nieves W, Russell-Lodrigue K, Roy CJ, Morici LA. 2014. Evaluation of a Burkholderia pseudomallei outer membrane vesicle vaccine in nonhuman primates. Procedia Vaccinol. 8: 38-42. https://doi.org/10.1016/j.provac.2014.07.007
  25. Acevedo R, Fernandez S, Zayas C, Acosta A, Sarmiento ME, Ferro VA, et al. 2014. Bacterial outer membrane vesicles and vaccine applications. Front. Immunol. 5: 121.
  26. Liu Q, Liu Q, Zhao X, Liu T, Yi J, Liang K, et al. 2016. Immunogenicity and cross-protective efficacy induced by outer membrane proteins from Salmonella Typhimurium mutants with truncated LPS in mice. Int. J. Mol. Sci. 17: 416. https://doi.org/10.3390/ijms17030416
  27. Liu Q, Liu Q, Jie Y, Kang L, Bo H, Zhang X, et al. 2016. Outer membrane vesicles from flagellin-deficient Salmonella enterica serovar Typhimurium induce cross-reactive immunity and provide cross-protection against heterologous Salmonella challenge. Sci. Rep. 6: 34776. https://doi.org/10.1038/srep34776
  28. Hitchcock P, Brown T. 1983. Morphological heterogeneity among Salmonella lipopolysaccharide chemotypes in silverstained polyacrylamide gels. J. Bacteriol. 154: 269-277.
  29. Laemmli UK. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685. https://doi.org/10.1038/227680a0
  30. Cox J, Matic I, Hilger M, Nagaraj N, Selbach M, Olsen JV, et al. 2009. A practical guide to the MaxQuant computational platform for SILAC-based quantitative proteomics. Nat. Protoc. 4: 698-705. https://doi.org/10.1038/nprot.2009.36
  31. de Godoy LM, Olsen JV, Cox J, Nielsen ML, Hubner NC, Frohlich F, et al. 2008. Comprehensive mass-spectrometrybased proteome quantification of haploid versus diploid yeast. Nature 455: 1251-1254. https://doi.org/10.1038/nature07341
  32. Lee EY, Choi DS, Kim KP, Gho YS. 2008. Proteomics in gram-negative bacterial outer membrane vesicles. Mass Spectrom. Rev. 27: 535-555. https://doi.org/10.1002/mas.20175
  33. Choi DS, Kim DK, Choi SJ, Lee J, Choi JP, Rho S, et al. 2011. Proteomic analysis of outer membrane vesicles derived from Pseudomonas aeruginosa. Proteomics 11: 3424-3429. https://doi.org/10.1002/pmic.201000212
  34. Lee EY, Bang JY, Park GW, Choi DS, Kang JS, Kim HJ, et al. 2007. Global proteomic profiling of native outer membrane vesicles derived from Escherichia coli. Proteomics 7: 3143-3153. https://doi.org/10.1002/pmic.200700196
  35. Lee J, Kim OY, Gho YS. 2016. Proteomic profiling of gramnegative bacterial outer membrane vesicles: current perspectives. Proteomics Clin. Appl. 10: 897-909. https://doi.org/10.1002/prca.201600032
  36. Wurpel DJ, Moriel DG, Totsika M, Easton DM, Schembri MA. 2015. Comparative analysis of the uropathogenic Escherichia coli surface proteome by tandem mass-spectrometry of artificially induced outer membrane vesicles. J. Proteomics 115: 93-106. https://doi.org/10.1016/j.jprot.2014.12.005
  37. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. 2000. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 25: 25-29. https://doi.org/10.1038/75556
  38. Bjerre A, Brusletto B, Mollnes TE, Fritzsonn E, Rosenqvist E, Wedege E, et al. 2002. Complement activation induced by purified Neisseria meningitidis lipopolysaccharide (LPS), outer membrane vesicles, whole bacteria, and an LPS-free mutant. J. Infect. Dis. 185: 220-228. https://doi.org/10.1086/338269
  39. Beveridge TJ. 1999. Structures of gram-negative cell walls and their derived membrane vesicles. J. Bacteriol. 181: 4725-4733.
  40. Voulhoux R, Bos MP, Geurtsen J, Mols M, Tommassen J. 2003. Role of a highly conserved bacterial protein in outer membrane protein assembly. Science 299: 262-265. https://doi.org/10.1126/science.1078973
  41. Feasey NA, Dougan G, Kingsley RA, Heyderman RS, Gordon MA. 2012. Invasive non-typhoidal Salmonella disease: an emerging and neglected tropical disease in Africa. Lancet 379: 2489-2499. https://doi.org/10.1016/S0140-6736(11)61752-2
  42. Wang S, Duan H, Zhang W, Li JW. 2007. Analysis of bacterial foodborne disease outbreaks in China between 1994 and 2005. FEMS Immunol. Med. Microbiol. 51: 8-13. https://doi.org/10.1111/j.1574-695X.2007.00305.x
  43. Taylor M, Leslie M, Ritson M, Stone J, Cox W, Hoang L, et al. 2012. Investigation of the concurrent emergence of Salmonella Enteritidis in humans and poultry in British Columbia, Canada, 2008-2010. Zoonoses Public Health 59: 584-592. https://doi.org/10.1111/j.1863-2378.2012.01500.x
  44. Jawad AA, Al-Charrakh AH. 2016. Outer membrane protein C (ompC) gene as the target for diagnosis of Salmonella species isolated from human and animal sources. Avicenna J. Med. Biotechnol. 8: 42-45.
  45. Cho Y, Park S, Barate AK, Truong QL, Han JH, Jung C-H, et al. 2015. Proteomic analysis of outer membrane proteins in Salmonella enterica Enteritidis. J. Microbiol. Biotechnol. 25: 288-295. https://doi.org/10.4014/jmb.1410.10052
  46. Durand D, Ochoa TJ, Bellomo SM, Contreras CA, Bustamante VH, Ruiz J, Cleary TG. 2013. Detection of secretory immunoglobulin A in human colostrum as mucosal immune response against proteins of the type three secretion system of Salmonella, Shigella and Enteropathogenic Escherichia coli. Pediatr. Infect. Dis. J. 32: 1122-1126. https://doi.org/10.1097/INF.0b013e318293306c
  47. Kuehn MJ, Kesty NC. 2005. Bacterial outer membrane vesicles and the host-pathogen interaction. Genes Dev. 19: 2645-2655. https://doi.org/10.1101/gad.1299905
  48. Collins F. 1969. Effect of specific immune mouse serum on the growth of Salmonella enteritidis in nonvaccinated mice challenged by various routes. J. Bacteriol. 97: 667-675.
  49. MacLennan CA, Martin LB, Micoli F. 2014. Vaccines against invasive Salmonella disease: current status and future directions. Hum. Vaccin. Immunother. 10: 1478-1493. https://doi.org/10.4161/hv.29054
  50. Kuipers K, Daleke-Schermerhorn MH, Jong WSP, Hagen-Jongman CMT, Opzeeland FV, Simonetti E, et al. 2015. Salmonella outer membrane vesicles displaying high densities of pneumococcal antigen at the surface offer protection against colonization. Vaccine 33: 2022-2029. https://doi.org/10.1016/j.vaccine.2015.03.010
  51. Ernst RK, Guina T, Miller SI. 2001. Salmonella typhimurium outer membrane remodeling: role in resistance to host innate immunity. Microb. Infect. 3: 1327-1334. https://doi.org/10.1016/S1286-4579(01)01494-0
  52. McGhee JR, Mestecky J, Dertzbaugh MT, Eldridge JH, Hirasawa M, Kiyono H. 1992. The mucosal immune system: from fundamental concepts to vaccine development. Vaccine 10: 75-88. https://doi.org/10.1016/0264-410X(92)90021-B
  53. Kraehenbuhl J-P, Neutra MR. 1992. Molecular and cellular basis of immune protection of mucosal surfaces. Physiol. Rev. 72: 853-879. https://doi.org/10.1152/physrev.1992.72.4.853
  54. Quakyi EK, Frasch CE, Buller N, Tsai CM. 1999. Immunization with meningococcal outer-membrane protein vesicles containing lipooligosaccharide protects mice against lethal experimental group B Neisseria meningitidis infection and septic shock. J. Infect. Dis. 180: 747-754. https://doi.org/10.1086/314927
  55. Koeberling O, Seubert A, Granoff DM. 2008. Bactericidal antibody responses elicited by a meningococcal outer membrane vesicle vaccine with overexpressed factor Hbinding protein and genetically attenuated endotoxin. J. Infect. Dis. 198: 262-270. https://doi.org/10.1086/589308
  56. Kong Q, Yang J, Liu Q, Alamuri P, Roland KL, Curtiss R. 2011. Effect of deletion of genes involved in lipopolysaccharide core and O-antigen synthesis on virulence and immunogenicity of Salmonella enterica serovar Typhimurium. Infect. Immun. 79: 4227-4239. https://doi.org/10.1128/IAI.05398-11

Cited by

  1. Bacterial outer membrane vesicles, a potential vaccine candidate in interactions with host cells based vol.13, pp.1, 2017, https://doi.org/10.1186/s13000-018-0768-y
  2. Outer Membrane Vesicle-Host Cell Interactions vol.7, pp.1, 2017, https://doi.org/10.1128/microbiolspec.psib-0001-2018
  3. Identification of Genes Involved in Biogenesis of Outer Membrane Vesicles (OMVs) in Salmonella enterica Serovar Typhi vol.10, pp.None, 2019, https://doi.org/10.3389/fmicb.2019.00104
  4. Design of Outer Membrane Vesicles as Cancer Vaccines: A New Toolkit for Cancer Therapy vol.11, pp.9, 2017, https://doi.org/10.3390/cancers11091314
  5. Gut Microbe-Derived Outer Membrane Vesicles: A Potential Platform to Control Cecal Load of Campylobacter jejuni vol.7, pp.5, 2017, https://doi.org/10.1021/acsinfecdis.0c00744
  6. Bacteria and bacterial derivatives as delivery carriers for immunotherapy vol.181, pp.None, 2022, https://doi.org/10.1016/j.addr.2021.114085