References
- Mathuria JP. 2009. Nanoparticles in tuberculosis diagnosis, treatment and prevention: a hope for the future. Digest J. Nanomater. Biostruct. 4: 309-312.
- Kell AJ, Stewart G, Ryan S, Peytavi R, Boissinot M, Huletsky A, et al. 2008. Vancomycin-modified nanoparticles for efficient targeting and preconcentration of gram-positive and gram-negative bacteria. ACS Nano 2: 1777-1788. https://doi.org/10.1021/nn700183g
- Cheon SA, Cho HH, Kim J, Lee J, Kim HJ, Park TJ. 2016. Recent tuberculosis diagnosis toward the end TB strategy. J. Microbiol. Methods 123: 51-61. https://doi.org/10.1016/j.mimet.2016.02.007
- Shim BS, Chen W, Doty C, Xu C, Kotov NA. 2008. Smart electronic yarns and wearable fabrics for human biomonitoring made by carbon nanotube coating with polyelectrolytes. Nano Lett. 8: 4151-4157. https://doi.org/10.1021/nl801495p
- Liong M, Lu J, Kovochich M, Xia T, Ruehm SG, Nel AE, et al. 2008. Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS Nano 2: 889-896. https://doi.org/10.1021/nn800072t
- Zhou H, Zou F, Koh K, Lee J. 2014. Multifunctional magnetoplasmonic nanomaterials and their biomedical applications. J. Biomed. Nanotechnol. 10: 2921-2949. https://doi.org/10.1166/jbn.2014.1938
- Perez JM, Simeone FJ, Saeki Y, Josephson L, Weissleder R. 2003. Viral-induced self-assembly of magnetic nanoparticles allows the detection of viral particles in biological media. J. Am. Chem. Soc. 125: 10192-10193. https://doi.org/10.1021/ja036409g
- Kim JS, Kuk E, Yu KN, Kim J-H, Park SJ, Lee HJ, et al. 2007. Antimicrobial effects of silver nanoparticles. Nanomedicine 3: 95-101. https://doi.org/10.1016/j.nano.2006.12.001
- Anandhakumar S, Raichur AM. 2013. Polyelectrolyte/silver nanocomposite multilayer films as multifunctional thin film platforms for remote activated protein and drug delivery. Acta Biomater. 9: 8864-8874. https://doi.org/10.1016/j.actbio.2013.06.012
- Chen X, Schluesener H. 2008. Nanosilver: a nanoproduct in medical application. Toxicol. Lett. 176: 1-12. https://doi.org/10.1016/j.toxlet.2007.10.004
- Lok C-N, Ho C-M, Chen R, He Q-Y, Yu W-Y, Sun H, et al. 2006. Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J. Proteome Res. 5: 916-924. https://doi.org/10.1021/pr0504079
- Wang H, L iu J, Wu X, Tong Z, Deng Z. 2013. Tailor-made Au@Ag core-shell nanoparticle 2D arrays on protein-coated graphene oxide with assembly enhanced antibacterial activity. Nanotechnology 24: 205102. https://doi.org/10.1088/0957-4484/24/20/205102
- Duran N, Marcato PD, De Souza GI, Alves OL, Esposito E. 2007. Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment. J. Biomed. Nanotechnol. 3: 203-208. https://doi.org/10.1166/jbn.2007.022
- Elechiguerra JL, Burt JL, Morones JR, Camacho-Bragado A, Gao X, Lara HH, et al. 2005. Interaction of silver nanoparticles with HIV-1. J. Nanobiotechnol. 3: 1. https://doi.org/10.1186/1477-3155-3-1
- Lee J-S, Lytton-Jean AK, Hurst SJ, Mirkin CA. 2007. Silver nanoparticle-oligonucleotide conjugates based on DNA with triple cyclic disulfide moieties. Nano Lett. 7: 2112-2115. https://doi.org/10.1021/nl071108g
- Thompson DG, Enright A, Faulds K, Smith WE, Graham D. 2008. Ultrasensitive DNA detection using oligonucleotidesilver nanoparticle conjugates. Anal. Chem. 80: 2805-2810. https://doi.org/10.1021/ac702403w
- Ting BP, Zhang J, Gao Z, Ying JY. 2009. A DNA biosensor based on the detection of doxorubicin-conjugated Ag nanoparticle labels using solid-state voltammetry. Biosens. Bioelectron. 25: 282-287. https://doi.org/10.1016/j.bios.2009.07.005
- Ren X, Meng X, Chen D, Tang F, Jiao J. 2005. Using silver nanoparticle to enhance current response of biosensor. Biosens. Bioelectron. 21: 433-437. https://doi.org/10.1016/j.bios.2004.08.052
- Pal S, Tak YK, Song JM. 2007. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl. Environ. Microbiol. 73: 1712-1720. https://doi.org/10.1128/AEM.02218-06
- Aymonier C, Schlotterbeck U, Antonietti L, Zacharias P, Thomann R, Tiller JC, et al. 2002. Hybrids of silver nanoparticles with amphiphilic hyperbranched macromolecules exhibiting antimicrobial properties. Chem. Commun. 2002: 3018-3019.
- Rubio-Martinez M, Puigmarti-Luis J, Imaz I, Dittrich PS, Maspoch D. 2013. "Dual-template" synthesis of one-dimensional conductive nanoparticle superstructures from coordination metal-peptide polymer crystals. Small 9: 4160-4167. https://doi.org/10.1002/smll.201301338
- Maretti L, Billone PS, Liu Y, Scaiano JC. 2009. Facile photochemical synthesis and characterization of highly fluorescent silver nanoparticles. J. Am. Chem. Soc. 131: 13972-13980. https://doi.org/10.1021/ja900201k
- Huang H, Ni X, Loy G, Chew C, Tan K, Loh F, et al. 1996. Photochemical formation of silver nanoparticles in poly (Nvinylpyrrolidone). Langmuir 12: 909-912. https://doi.org/10.1021/la950435d
- Yin B, Ma H, Wang S, Chen S. 2003. Electrochemical synthesis of silver nanoparticles under protection of poly (N-vinylpyrrolidone). J. Phys. Chem. B 107: 8898-8904. https://doi.org/10.1021/jp0349031
- Rodriguez-Sanchez L, Blanco M, Lopez-Quintela M. 2000. Electrochemical synthesis of silver nanoparticles. J. Phys. Chem. B 104: 9683-9688. https://doi.org/10.1021/jp001761r
- Biswal J, Misra N, Borde LC, Sabharwal S. 2013. Synthesis of silver nanoparticles in methacrylic acid solution by gamma radiolysis and their application for estimation of dopamine at low concentrations. Rad. Phys. Chem. 83: 67-73. https://doi.org/10.1016/j.radphyschem.2012.10.003
- Hu B, Wang S-B, Wang K, Zhang M, Yu S-H. 2008. Microwave-assisted rapid facile "green" synthesis of uniform silver nanoparticles: self-assembly into multilayered films and their optical properties. J. Phys. Chem C 112: 11169-11174. https://doi.org/10.1021/jp801267j
- Pillai ZS, Kamat PV. 2004. What factors control the size and shape of silver nanoparticles in the citrate ion reduction method? J. Phys. Chem. B 108: 945-951. https://doi.org/10.1021/jp037018r
- Turkevich J, Stevenson PC, Hillier J. 1951. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc. 11: 55-75. https://doi.org/10.1039/df9511100055
- Zhang T, Wang L, Chen Q, Chen C. 2014. Cytotoxic potential of silver nanoparticles. Yonsei Med. J. 55: 283-291. https://doi.org/10.3349/ymj.2014.55.2.283
- Burello E, Worth AP. 2011. QSAR modeling of nanomaterials. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 3: 298-306. https://doi.org/10.1002/wnan.137
- Puzyn T, Rasulev B, Gajewicz A, Hu X, Dasari TP, Michalkova A, et al. 2011. Using nano-QSAR to predict the cytotoxicity of metal oxide nanoparticles. Nat. Nanotechnol. 6: 175-178. https://doi.org/10.1038/nnano.2011.10
- Hubbard BK, Walsh CT. 2003. Vancomycin assembly: nature's way. Angew. Chem. Int. Ed. Engl. 42: 730-765. https://doi.org/10.1002/anie.200390202
- Walsh C. 1999. Deconstructing vancomycin. Science 284: 442-443. https://doi.org/10.1126/science.284.5413.442
- Everaerts F, Torrianni M, Hendriks M, Feijen J. 2008. Biomechanical properties of carbodiimide crosslinked collagen: influence of the formation of ester crosslinks. J. Biomed. Mater. Res. A 85: 547-555.
- Loveymi BD, Jelvehgari M, Zakeri-Milani P, Valizadeh H. 2012. Design of vancomycin RS-100 nanoparticles in order to increase the intestinal permeability. Adv. Pharm. Bull. 2: 43.
- Thottoli AK, Unni AKA. 2013. Effect of trisodium citrate concentration on the particle growth of ZnS nanoparticles. J. Nanostruct. Chem. 3: 1-12.
- Yoo HS, Lee KH, Oh JE, Park TG. 2000. In vitro and in vivo anti-tumor activities of nanoparticles based on doxorubicin-PLGA conjugates. J. Control. Release 68: 419-431. https://doi.org/10.1016/S0168-3659(00)00280-7
Cited by
- Latest Comprehensive Knowledge of the Crosstalk between TLR Signaling and Mycobacteria and the Antigens Driving the Process vol.29, pp.10, 2019, https://doi.org/10.4014/jmb.1908.08057
- Silver Nanoparticles for the Therapy of Tuberculosis vol.15, pp.None, 2017, https://doi.org/10.2147/ijn.s241183
- Mycogenic Metal Nanoparticles for the Treatment of Mycobacterioses vol.9, pp.9, 2020, https://doi.org/10.3390/antibiotics9090569
- Approaches to treating tuberculosis by encapsulating metal ions and anti-mycobacterial drugs utilizing nano- and microparticle technologies vol.4, pp.6, 2017, https://doi.org/10.1042/etls20190154