DOI QR코드

DOI QR Code

Enhanced Internalization of Macromolecular Drugs into Mycobacterium smegmatis with the Assistance of Silver Nanoparticles

  • Sun, Fangfang (Research Institute of Green Science and Technology, Shizuoka University) ;
  • Oh, Sangjin (Department of Cogno-mechatronics Engineering, Pusan National University) ;
  • Kim, Jeonghyo (Department of Cogno-mechatronics Engineering, Pusan National University) ;
  • Kato, Tatsuya (Research Institute of Green Science and Technology, Shizuoka University) ;
  • Kim, Hwa-Jung (Department of Microbiology and Research Institute for Medical Science, College of Medicine, Chungnam National University) ;
  • Lee, Jaebeom (Department of Cogno-mechatronics Engineering, Pusan National University) ;
  • Park, Enoch Y. (Research Institute of Green Science and Technology, Shizuoka University)
  • Received : 2017.01.04
  • Accepted : 2017.06.08
  • Published : 2017.08.28

Abstract

In this study, silver nanoparticles (AgNPs) were synthesized by the citrate reduction process and, with the assistance of n-hydroxysuccinimide and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide, were successfully loaded with the macromolecular drug vancomycin (VAM) to form AgNP-VAM bioconjugates. The synthesized AgNPs, VAM, and AgNP-VAM conjugate were characterized by UV-visible spectroscopy, zeta potential analysis, confocal microscopy, and transmission electron microscopy. The effect of loading VAM onto AgNPs was investigated by testing the internalization of the bioconjugate into Mycobacterium smegmatis. After treatment with the AgNP-VAM conjugate, the bacterial cells showed a significant decrease in UV absorption, indicating that loading of the VAM on AgNPs had vastly improved the drug's internalization compared with that of AgNPs. All the experimental assessments showed that, compared with free AgNPs and VAM, enhanced internalization had been successfully achieved with the AgNP-VAM conjugate, thus leading to significantly better delivery of the macromolecular drug into the M. smegmatis cell. The current research provides a new potential drug delivery system for the treatment of mycobacterial infections.

Keywords

References

  1. Mathuria JP. 2009. Nanoparticles in tuberculosis diagnosis, treatment and prevention: a hope for the future. Digest J. Nanomater. Biostruct. 4: 309-312.
  2. Kell AJ, Stewart G, Ryan S, Peytavi R, Boissinot M, Huletsky A, et al. 2008. Vancomycin-modified nanoparticles for efficient targeting and preconcentration of gram-positive and gram-negative bacteria. ACS Nano 2: 1777-1788. https://doi.org/10.1021/nn700183g
  3. Cheon SA, Cho HH, Kim J, Lee J, Kim HJ, Park TJ. 2016. Recent tuberculosis diagnosis toward the end TB strategy. J. Microbiol. Methods 123: 51-61. https://doi.org/10.1016/j.mimet.2016.02.007
  4. Shim BS, Chen W, Doty C, Xu C, Kotov NA. 2008. Smart electronic yarns and wearable fabrics for human biomonitoring made by carbon nanotube coating with polyelectrolytes. Nano Lett. 8: 4151-4157. https://doi.org/10.1021/nl801495p
  5. Liong M, Lu J, Kovochich M, Xia T, Ruehm SG, Nel AE, et al. 2008. Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS Nano 2: 889-896. https://doi.org/10.1021/nn800072t
  6. Zhou H, Zou F, Koh K, Lee J. 2014. Multifunctional magnetoplasmonic nanomaterials and their biomedical applications. J. Biomed. Nanotechnol. 10: 2921-2949. https://doi.org/10.1166/jbn.2014.1938
  7. Perez JM, Simeone FJ, Saeki Y, Josephson L, Weissleder R. 2003. Viral-induced self-assembly of magnetic nanoparticles allows the detection of viral particles in biological media. J. Am. Chem. Soc. 125: 10192-10193. https://doi.org/10.1021/ja036409g
  8. Kim JS, Kuk E, Yu KN, Kim J-H, Park SJ, Lee HJ, et al. 2007. Antimicrobial effects of silver nanoparticles. Nanomedicine 3: 95-101. https://doi.org/10.1016/j.nano.2006.12.001
  9. Anandhakumar S, Raichur AM. 2013. Polyelectrolyte/silver nanocomposite multilayer films as multifunctional thin film platforms for remote activated protein and drug delivery. Acta Biomater. 9: 8864-8874. https://doi.org/10.1016/j.actbio.2013.06.012
  10. Chen X, Schluesener H. 2008. Nanosilver: a nanoproduct in medical application. Toxicol. Lett. 176: 1-12. https://doi.org/10.1016/j.toxlet.2007.10.004
  11. Lok C-N, Ho C-M, Chen R, He Q-Y, Yu W-Y, Sun H, et al. 2006. Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J. Proteome Res. 5: 916-924. https://doi.org/10.1021/pr0504079
  12. Wang H, L iu J, Wu X, Tong Z, Deng Z. 2013. Tailor-made Au@Ag core-shell nanoparticle 2D arrays on protein-coated graphene oxide with assembly enhanced antibacterial activity. Nanotechnology 24: 205102. https://doi.org/10.1088/0957-4484/24/20/205102
  13. Duran N, Marcato PD, De Souza GI, Alves OL, Esposito E. 2007. Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment. J. Biomed. Nanotechnol. 3: 203-208. https://doi.org/10.1166/jbn.2007.022
  14. Elechiguerra JL, Burt JL, Morones JR, Camacho-Bragado A, Gao X, Lara HH, et al. 2005. Interaction of silver nanoparticles with HIV-1. J. Nanobiotechnol. 3: 1. https://doi.org/10.1186/1477-3155-3-1
  15. Lee J-S, Lytton-Jean AK, Hurst SJ, Mirkin CA. 2007. Silver nanoparticle-oligonucleotide conjugates based on DNA with triple cyclic disulfide moieties. Nano Lett. 7: 2112-2115. https://doi.org/10.1021/nl071108g
  16. Thompson DG, Enright A, Faulds K, Smith WE, Graham D. 2008. Ultrasensitive DNA detection using oligonucleotidesilver nanoparticle conjugates. Anal. Chem. 80: 2805-2810. https://doi.org/10.1021/ac702403w
  17. Ting BP, Zhang J, Gao Z, Ying JY. 2009. A DNA biosensor based on the detection of doxorubicin-conjugated Ag nanoparticle labels using solid-state voltammetry. Biosens. Bioelectron. 25: 282-287. https://doi.org/10.1016/j.bios.2009.07.005
  18. Ren X, Meng X, Chen D, Tang F, Jiao J. 2005. Using silver nanoparticle to enhance current response of biosensor. Biosens. Bioelectron. 21: 433-437. https://doi.org/10.1016/j.bios.2004.08.052
  19. Pal S, Tak YK, Song JM. 2007. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl. Environ. Microbiol. 73: 1712-1720. https://doi.org/10.1128/AEM.02218-06
  20. Aymonier C, Schlotterbeck U, Antonietti L, Zacharias P, Thomann R, Tiller JC, et al. 2002. Hybrids of silver nanoparticles with amphiphilic hyperbranched macromolecules exhibiting antimicrobial properties. Chem. Commun. 2002: 3018-3019.
  21. Rubio-Martinez M, Puigmarti-Luis J, Imaz I, Dittrich PS, Maspoch D. 2013. "Dual-template" synthesis of one-dimensional conductive nanoparticle superstructures from coordination metal-peptide polymer crystals. Small 9: 4160-4167. https://doi.org/10.1002/smll.201301338
  22. Maretti L, Billone PS, Liu Y, Scaiano JC. 2009. Facile photochemical synthesis and characterization of highly fluorescent silver nanoparticles. J. Am. Chem. Soc. 131: 13972-13980. https://doi.org/10.1021/ja900201k
  23. Huang H, Ni X, Loy G, Chew C, Tan K, Loh F, et al. 1996. Photochemical formation of silver nanoparticles in poly (Nvinylpyrrolidone). Langmuir 12: 909-912. https://doi.org/10.1021/la950435d
  24. Yin B, Ma H, Wang S, Chen S. 2003. Electrochemical synthesis of silver nanoparticles under protection of poly (N-vinylpyrrolidone). J. Phys. Chem. B 107: 8898-8904. https://doi.org/10.1021/jp0349031
  25. Rodriguez-Sanchez L, Blanco M, Lopez-Quintela M. 2000. Electrochemical synthesis of silver nanoparticles. J. Phys. Chem. B 104: 9683-9688. https://doi.org/10.1021/jp001761r
  26. Biswal J, Misra N, Borde LC, Sabharwal S. 2013. Synthesis of silver nanoparticles in methacrylic acid solution by gamma radiolysis and their application for estimation of dopamine at low concentrations. Rad. Phys. Chem. 83: 67-73. https://doi.org/10.1016/j.radphyschem.2012.10.003
  27. Hu B, Wang S-B, Wang K, Zhang M, Yu S-H. 2008. Microwave-assisted rapid facile "green" synthesis of uniform silver nanoparticles: self-assembly into multilayered films and their optical properties. J. Phys. Chem C 112: 11169-11174. https://doi.org/10.1021/jp801267j
  28. Pillai ZS, Kamat PV. 2004. What factors control the size and shape of silver nanoparticles in the citrate ion reduction method? J. Phys. Chem. B 108: 945-951. https://doi.org/10.1021/jp037018r
  29. Turkevich J, Stevenson PC, Hillier J. 1951. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc. 11: 55-75. https://doi.org/10.1039/df9511100055
  30. Zhang T, Wang L, Chen Q, Chen C. 2014. Cytotoxic potential of silver nanoparticles. Yonsei Med. J. 55: 283-291. https://doi.org/10.3349/ymj.2014.55.2.283
  31. Burello E, Worth AP. 2011. QSAR modeling of nanomaterials. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 3: 298-306. https://doi.org/10.1002/wnan.137
  32. Puzyn T, Rasulev B, Gajewicz A, Hu X, Dasari TP, Michalkova A, et al. 2011. Using nano-QSAR to predict the cytotoxicity of metal oxide nanoparticles. Nat. Nanotechnol. 6: 175-178. https://doi.org/10.1038/nnano.2011.10
  33. Hubbard BK, Walsh CT. 2003. Vancomycin assembly: nature's way. Angew. Chem. Int. Ed. Engl. 42: 730-765. https://doi.org/10.1002/anie.200390202
  34. Walsh C. 1999. Deconstructing vancomycin. Science 284: 442-443. https://doi.org/10.1126/science.284.5413.442
  35. Everaerts F, Torrianni M, Hendriks M, Feijen J. 2008. Biomechanical properties of carbodiimide crosslinked collagen: influence of the formation of ester crosslinks. J. Biomed. Mater. Res. A 85: 547-555.
  36. Loveymi BD, Jelvehgari M, Zakeri-Milani P, Valizadeh H. 2012. Design of vancomycin RS-100 nanoparticles in order to increase the intestinal permeability. Adv. Pharm. Bull. 2: 43.
  37. Thottoli AK, Unni AKA. 2013. Effect of trisodium citrate concentration on the particle growth of ZnS nanoparticles. J. Nanostruct. Chem. 3: 1-12.
  38. Yoo HS, Lee KH, Oh JE, Park TG. 2000. In vitro and in vivo anti-tumor activities of nanoparticles based on doxorubicin-PLGA conjugates. J. Control. Release 68: 419-431. https://doi.org/10.1016/S0168-3659(00)00280-7

Cited by

  1. Latest Comprehensive Knowledge of the Crosstalk between TLR Signaling and Mycobacteria and the Antigens Driving the Process vol.29, pp.10, 2019, https://doi.org/10.4014/jmb.1908.08057
  2. Silver Nanoparticles for the Therapy of Tuberculosis vol.15, pp.None, 2017, https://doi.org/10.2147/ijn.s241183
  3. Mycogenic Metal Nanoparticles for the Treatment of Mycobacterioses vol.9, pp.9, 2020, https://doi.org/10.3390/antibiotics9090569
  4. Approaches to treating tuberculosis by encapsulating metal ions and anti-mycobacterial drugs utilizing nano- and microparticle technologies vol.4, pp.6, 2017, https://doi.org/10.1042/etls20190154