References
- A. K. S. Jardine, D. Lin, and D. Banjevic, "A Review on Mchinery Diagnostics and Prognostics Implementing Condition-Based Maintenance," Mech. Syst. Signal Process., vol. 20, no. 7, pp. 1483-1510, Oct. 2006. https://doi.org/10.1016/j.ymssp.2005.09.012
- S. A. Mortazavizadeh and S. M. G. Mousavi, "A Review on Condition Monitoring and Diagnostic Techniques of Rotating Electrical Machines," Phys. Sci. Int. J., vol. 4, no. 3, pp. 310-338, 2014. https://doi.org/10.9734/PSIJ/2014/4837
- G. K. Singh, A. Saleh, and A. Kazzaz, "Induction Machine Drive Condition Monitoring and Diagnostic Research-A Survey," Electr. Power Syst. Res., vol. 64, no. 2, pp. 145-158, 2003. https://doi.org/10.1016/S0378-7796(02)00172-4
- M. Tsypkin, "Induction Motor Condition Monitoring: Vibration Analysis Technique-a Practical Implementation," in 2011 IEEE International Electric Machines & Drives Conference, 2011, pp. 406-411.
- D.-H. Hwang, Y.-W. Youn, J.-H. Sun, K.-H. Choi, J.-H. Lee, and Y.-H. Kim, "Support Vector Machine Based Bearing Fault Diagnosis for Induction Motors Using Vibration Signals," J. Electr. Eng. Technol., vol. 10, no. 4, pp. 1558-1565, 2015. https://doi.org/10.5370/JEET.2015.10.4.1558
- T. W. Rauber, F. de Assis Boldt, and F. M. Varejao, "Heterogeneous Feature Models and Feature Selection Applied to Bearing Fault Diagnosis," IEEE Trans. Ind. Electron., vol. 62, no. 1, pp. 637-646, Jan. 2015. https://doi.org/10.1109/TIE.2014.2327589
- V. K. Rai and A. R. Mohanty, "Bearing fault diagnosis using FFT of intrinsic mode functions in Hilbert-Huang transform," Mech. Syst. Signal Process., vol. 21, no. 6, pp. 2607-2615, Aug. 2007. https://doi.org/10.1016/j.ymssp.2006.12.004
- G. A. Jimenez, A. O. Munoz, and M. A. Duarte-Mermoud, "Fault detection in induction motors using Hilbert and Wavelet transforms," Electr. Eng., vol. 89, no. 3, pp. 205-220, Feb. 2006. https://doi.org/10.1007/s00202-005-0339-6
- Q. He, "Time-frequency manifold for nonlinear feature extraction in machinery fault diagnosis," Mech. Syst. Signal Process., vol. 35, no. 1-2, pp. 200-218, Feb. 2013. https://doi.org/10.1016/j.ymssp.2012.08.018
- A. Mohammadi and M. S. Safizadeh, "Bearing Multiple Defects Detection Based on Envelope Detector Time Constant," J. Tribol., vol. 135, no. 1, p. 011102, Dec. 2012. https://doi.org/10.1115/1.4007806
- Case Western Reserve University, Bearing data center [online], Available:URL:http://www.eecs.cwru.edu/laboratory/bearing/download.htm, 2016
- S. Hesari and A. Hoseini, "A New Approach to Improve Induction Motor Performance in Light-Load Conditions," J. Electr. Eng. Technol., vol. 12, no. 3, pp. 1195-1202, 2017. https://doi.org/10.5370/JEET.2017.12.3.1195
- A. Sharma, M. Amarnath, and P. Kankar, "Feature extraction and fault severity classification in ball bearings," J. Vib. Control, no. April, pp. 1-17, Apr. 2014.
- U. Sengamalai and S. Chinnamuthu, "An Experimental Fault Analysis and Speed Control of an Induction Motor using Motor Solver," J. Electr. Eng. Technol., vol. 12, no. 2, pp. 761-768, 2017. https://doi.org/10.5370/JEET.2017.12.2.761
- R. B. W. B. W. Heng and M. J. M. J. M. Nor, "Statistical analysis of sound and vibration signals for monitoring rolling element bearing condition," Appl. Acoust., vol. 53, no. 1-3, pp. 211-226, Jan. 1998. https://doi.org/10.1016/S0003-682X(97)00018-2
- D. Wang and C. Shen, "An equivalent cyclic energy indicator for bearing performance degradation assessment," J. Vib. Control, no. September, Sep. 2014.
- P. Henriquez Rodriguez, J. B. Alonso, M. A. Ferrer, and C. M. Travieso, "Application of the Teager-Kaiser energy operator in bearing fault diagnosis," ISA Trans., vol. 52, no. 2, pp. 278-284, 2013. https://doi.org/10.1016/j.isatra.2012.12.006
- M. Pineda-sanchez, S. Member, J. Perez-cruz, J. Pons-llinares, V. Climente-alarcon, and J. a Antoninodaviu, "Application of the Teager-Kaiser Energy Operator to the Fault Diagnosis of Induction Motors," IEEE Trans. Energy Convers., vol. 28, no. 4, pp. 1036-1044, 2013. https://doi.org/10.1109/TEC.2013.2279917
- P. Maragos, J. F. Kaiser, and T. F. Quatieri, "Energy separation in signal modulations with application to speech analysis," IEEE Trans. Signal Process., vol. 41, no. 10, pp. 3024-3051, 1993. https://doi.org/10.1109/78.277799
- V. T. Tran, F. AlThobiani, and A. Ball, "An approach to fault diagnosis of reciprocating compressor valves using Teager-Kaiser energy operator and deep belief networks," Expert Syst. Appl., vol. 41, no. 9, pp. 4113-4122, 2014. https://doi.org/10.1016/j.eswa.2013.12.026
- N. Mehala and R. Dahiya, "A comparative study of FFT, STFT and wavelet techniques for induction machine fault diagnostic analysis," CIMMACS'08 Proceedings of the 7th WSEAS international conference on Computational intelligence, manmachine systems and cybernetics, 2008.
- K. Gaeid and H. Ping, "Fault Diagnosis of Induction Motor Using MCSA and FFT," Electrical and Electronics Engineering, vol. 1, no. 2, pp. 85-92, 2011.