DOI QR코드

DOI QR Code

Study on the Interaction of U(VI) Species With Natural Organic Matters in KURT Groundwater

KURT 지하수의 천연 유기물질과 6가 우라늄 화학종의 상호작용에 관한 연구

  • Received : 2017.01.26
  • Accepted : 2017.04.21
  • Published : 2017.06.30

Abstract

The interaction of U(VI) (hexavalent uranium) species with natural organic matter (NOM) in KURT (KAERI Underground Research Tunnel) groundwater is investigated using a laser spectroscopic technique. The luminescence spectra of the NOM are observed in the ultraviolet and blue wavelength regions by irradiating a laser beam at 266 nm in groundwater. The luminescence spectra of U(VI) species in groundwater containing uranium concentrations of $0.034-0.788mg{\cdot}L^{-1}$ are measured in the green-colored wavelength region. The luminescence characteristics (peak wavelengths and lifetime) of U(VI) in the groundwater agree well with those of $Ca_2UO_2(CO_3)_3(aq)$ in a standard solution prepared in a laboratory. The luminescence intensities of U(VI) in the groundwater are weaker than those of $Ca_2UO_2(CO_3)_3(aq)$ in the standard solution at the same uranium concentrations. The luminescence intensities of $Ca_2UO_2(CO_3)_3(aq)$ in the standard solution mixed with the groundwater are also weaker than those of $Ca_2UO_2(CO_3)_3(aq)$ in the standard solution at the same uranium concentrations. These results can be ascribed to calcium-U(VI)-carbonate species interacting with NOM and forming non-radiative U(VI) complexes in groundwater.

KURT(KAERI Underground Research Tunnel) 지하수에 존재하는 천연 유기물질과 6가 우라늄(U(VI))화학종의 상호작용을 레이저 분광학 기술을 이용하여 조사하였다. 지하수 시료에 266 nm 파장의 레이저 빛을 입사시켜 자외선 및 파란색 파장 영역에서 방출되는 천연 유기물질의 발광 스펙트럼을 관측하였다. $0.034-0.788mg{\cdot}L^{-1}$ 농도 범위의 우라늄이 함유된 지하수에서는 녹색 파장 영역에서 방출되는 U(VI) 화학종의 발광 스펙트럼을 측정하였다. 지하수에 함유된 U(VI) 화학종의 발광 특성(피크 파장 및 발광 수명)이 실험실에서 제조한 표준용액에 함유된 $Ca_2UO_2(CO_3)_3(aq)$의 발광 특성과 매우 유사하다는 것을 확인하였다. 지하수에 존재하는 U(VI) 화학종의 발광 세기는 표준용액에 함유된 같은 농도의 $Ca_2UO_2(CO_3)_3(aq)$의 발광세기에 비해 약하다. 표준용액의 $Ca_2UO_2(CO_3)_3(aq)$를 천연 유기물질이 함유된 지하수에 섞었을 때에도 $Ca_2UO_2(CO_3)_3(aq)$의 발광 세기가 감소한다. 이러한 현상의 원인을 지하수의 천연 유기물질과 Ca-U(VI)-탄산염 화학종의 상호작용으로 인해 비발광성 U(VI) 착물이 형성되기 때문인 것으로 설명하였다.

Keywords

References

  1. J.I. Kim, "Significance of Actinide Chemistry for the Long-Term Safety of Waste Disposal", Nucl. Eng. Technol., 38(6), 459-482 (2006).
  2. M. Altmaier, X. Gaona, and T. Fanghanel, "Recent advances in aqueous actinide chemistry and thermodynamics", Chem. Rev., 113, 910-943 (2013).
  3. G.R. Choppin and B. Allard, "Complexes of actinides with naturally occurring organic compounds", in: Handbook on the Physics and Chemistry of the Actinides, A.J. Freeman, C. Keller, eds., vol. 3, 407-429, Elsevier Science Publishers B.V. (1985).
  4. J.I. Kim, "Chemical behaviour of transuranic elements in natural aquatic systems", in: Handbook on the Physics and Chemistry of the Actinides, A.J. Freeman, C. Keller, eds., vol. 4, 413-455, Elsevier Science Publishers B.V. (1986).
  5. W.C. Li, D.M. Victor, and C.L. Chakrabarti, "Effect of pH and Uranium Concentration on Interaction of Uranium(VI) and Uranium(IV) with Organic Ligands in Aqueous Solutions", Anal. Chem., 52, 520-523 (1980). https://doi.org/10.1021/ac50053a033
  6. J.I. Kim and K.R. Czerwinski, "Complexation of Metal Ions with Humic Acid: Metal Ion Charge Neutralization Model", Radiochim. Acta, 73, 5-10 (1996).
  7. P. Zeh, K.R. Czerwinski, and J.I. Kim, "Speciation of Uranium in Gorleben Groundwaters", Radiochim. Acta, 76, 37-44 (1997).
  8. K. Schmeide, S. Sachs, M. Bubner, T. Reich, K.H. Heise, and G. Bernhard, "Interaction of uranium(VI) with various modified and unmodified natural and synthetic humic substances studied by EXAFS and FTIR spectroscopy", Inorg. Chim. Acta, 351, 133-140 (2003). https://doi.org/10.1016/S0020-1693(03)00184-1
  9. I. Pashalidis and G. Buckau, "U(VI) mono-hydroxo humate complexation", J. Radioanal. Nucl. Chem., 273, 315-322 (2007). https://doi.org/10.1007/s10967-007-6860-5
  10. S. Sachs, V. Brendler, and G. Geipel, "Uranium(VI) complexation by humic acid under neutral pH conditions studied by laser-induced fluorescence spectroscopy", Radiochim. Acta, 95, 103-110 (2007).
  11. R. Steudtner, S. Sachs, K. Schmeide, V. Brendler, and G. Bernhard, "Ternary uranium(VI) carbonato complex studied by cryo-TRLFS", Radiochim. Acta, 99, 687-692 (2011). https://doi.org/10.1524/ract.2011.1861
  12. A. Matilainen, E.T. Gjessing, T. Lahtinen, L. Hed, A. Bhatnagar, and M. Sillanpaa, "An overview of the methods used in the characterisation of natural organic matter (NOM) in relation to drinking water treatment", Chemosphere, 83, 1431-1442 (2011). https://doi.org/10.1016/j.chemosphere.2011.01.018
  13. P.G. Coble, S.A. Green, N.V. Blough, and R.B. Gagosian, "Characterization of dissolved organic matter in the Black Sea by fluorescence spectroscopy", Nature, 348, 432-435 (1990) https://doi.org/10.1038/348432a0
  14. M.U. Kumke, H.G. Lohmannsroben, and Th. Roch, "Fluorescence Spectroscopy of Polynuclear Aromatic Compounds in Environmental Monitoring", J. Fluoresc., 5, 139-153 (1995). https://doi.org/10.1007/BF00727531
  15. N. Her, G. Amy, D. McKnight, J. Sohn, and Y. Yoon, "Characterization of DOM as a function of MW by fluorescence EEM and HPLC-SEC using UVA, DOC, and fluorescence detection", Water Res., 37, 4295-4303 (2003). https://doi.org/10.1016/S0043-1354(03)00317-8
  16. A. Baker, E. Tipping, S.A. Thacker, and D. Gondar, "Relating dissolved organic matter fluorescence and functional properties", Chemosphere, 73, 1765-1772 (2008). https://doi.org/10.1016/j.chemosphere.2008.09.018
  17. K.R. Murphy, K.D. Butler, R.G.M. Spencer, C.A. Stedmon, J.R. Boehme, and G.R. Aiken, "Measurement of Dissolved Organic Matter Fluorescence in Aquatic Environments: An Interlaboratory Comparison", Environ. Sci. Technol., 44, 9405-9412 (2010). https://doi.org/10.1021/es102362t
  18. J.B.F. Lloyd, "Synchronized Excitation of Fluorescence Emission Spectra", Nature Phys. Sci., 231, 64-65 (1971).
  19. J.B.F. Lloyd, "The Nature and Evidential Value of the Luminescence of Automobile Engine Oils and Related Materials Part I. Synchronous Excitation of Fluorescence Emission", J. Forensic Sci. Soc., 11, 83-94 (1971). https://doi.org/10.1016/S0015-7368(71)70633-1
  20. J.W. Hofstraat and U.P. Wild, "Constant-Energy Synchronous Scan and Excitation Emission Matrix Shpol'skii Spectroscopy for Characterization of PAHs", J. Fluoresc., 8, 319-325 (1998). https://doi.org/10.1023/A:1020516313895
  21. F. Salinas, A.M. de la Pena, L.F. Capitan-Vallvey, and A. Navalon, "Simultaneous Determination of Molybdenum and Tungsten by First-derivative Synchronous Spectrofluorimetry", Analyst, 114, 1297-1301 (1989). https://doi.org/10.1039/AN9891401297
  22. F. Salinas, A.M. de la Pena, I. Duran-Meras, and M.S. Duran, "Determination of Salicylic Acid and its Metabolites in Urine by Derivative Synchronous Spectrofluorimetry", Analyst, 115, 1007-1011 (1990) https://doi.org/10.1039/AN9901501007
  23. C.L. Stevenson and T. Vo-Dinh, "Laser-Excited Synchronous Luminescence Spectroscopy", Appl. Spectrosc., 47, 430-435 (1993). https://doi.org/10.1366/0003702934334967
  24. C. Horst, V.K. Sharma, J.C. Baum, and M. Sohn, "Organic matter source discrimination by humic acid characterization: Synchronous scan fluorescence spectroscopy and Ferrate(VI)", Chemosphere, 90, 2013-2019 (2013). https://doi.org/10.1016/j.chemosphere.2012.10.076
  25. M.U. Kumke, C. Tiseanu, G. Abbt-Braun, and F.H. Frimmel, "Fluorescence Decay of Natural Organic Matter (NOM)-Influence of Fractionation, Oxidation, and Metal Ion Complexation", J. Fluoresc., 8, 309-318 (1998). https://doi.org/10.1023/A:1020564229825
  26. M.U. Kumke, C. Zwiener, G. Abbt-Braun, and F.H. Frimmel, "Spectroscopic Characterization of Fulvic Acid Fractions of a Contaminated Groundwater", Acta Hydrochim. Hydrobiol., 27, 409-415 (1999). https://doi.org/10.1002/(SICI)1521-401X(199912)27:6<409::AID-AHEH409>3.0.CO;2-V
  27. C. Moulin, P. Decambox, V. Moulin, and J.G. Decaillon, "Uranium Speciation in Solution by Time-Resolved Laser-Induced Fluorescence", Anal. Chem., 67, 348-353 (1995). https://doi.org/10.1021/ac00098a019
  28. C. Moulin, I. Laszak, V. Moulin, and C. Tondre, "Time-Resolved Laser-Induced Fluorescence as a Unique Tool for Low-Level Uranium Speciation", Appl. Spectrosc., 52, 528-535 (1998). https://doi.org/10.1366/0003702981944076
  29. G. Geipel, "Some aspects of actinide speciation by laser-induced spectroscopy", Coord. Chem. Rev., 250, 844-854 (2006). https://doi.org/10.1016/j.ccr.2005.11.007
  30. G. Bernhard, G. Geipel, V. Brendler, and H. Nitsche, "Speciation of Uranium in Seepage Waters of a Mine Tailing Pile Studied by Time-Resolved Laser-Induced Fluorescence Spectroscopy (TRLFS)", Radiochim. Acta, 74, 87-91 (1996).
  31. G. Bernhard, G. Geipel, T. Reich, V. Brendler, S. Amayri, and H. Nitsche, "Uranyl(VI) carbonate complex formation: Validation of the $Ca_2UO_2(CO_3)_3(aq.)$ species", Radiochim. Acta, 89, 511-518 (2001).
  32. C. Gotz, G. Geipel, and G. Bernhard, "The influence of the temperature on the carbonate complexation of uranium(VI): a spectroscopic study", J. Radioanal. Nucl. Chem., 287, 961-969 (2011). https://doi.org/10.1007/s10967-010-0854-4
  33. J.Y. Lee and J.I. Yun, "Formation of ternary $CaUO_2(CO_3){_3}^{2-}$ and $Ca_2UO_2(CO_3)_3(aq)$ complexes under neutral to weakly alkaline conditions", Dalton Trans., 42, 9862-9869 (2013). https://doi.org/10.1039/c3dt50863c
  34. E.C. Jung, H.R. Cho, M.H. Baik, and W. Cha, "Time-resolved laser fluorescence spectroscopy of $UO_2(CO_3){_3}^{4-}$" Dalton Trans., 44, 18831-18838 (2015). https://doi.org/10.1039/C5DT02873F
  35. M.H. Baik, E.C. Jung, and J. Jeong, "Determination of uranium concentration and speciation in natural granitic groundwater using TRLFS", J. Radioanal. Nucl. Chem., 305, 589-598 (2015). https://doi.org/10.1007/s10967-015-3971-2
  36. E.C. Jung, H.R. Cho, and K.K. Park, "Study on the Chemical Speciation of Hydrolysis Compounds of U(VI) by Using Time-Resolved Laser-Induced Fluorescence Spectroscopy", J. Kor. Rad. Waste Soc., 7, 133-141 (2009).
  37. W. Dong and S.C. Brooks, "Determination of the Formation Constants of Ternary Complexes of Uranyl and Carbonate with Alkaline Earth Metals ($Mg^{2+}$, $Ca^{2+}$, $Sr^{2+}$, and $Ba^{2+}$) Using Anion Exchange Method", Environ. Sci. Technol., 40, 4689-4695 (2006). https://doi.org/10.1021/es0606327

Cited by

  1. Radioanalytical and Spectroscopic Characterizations of Hydroxo- and Oxalato-Am(Ⅲ) Complexes vol.16, pp.4, 2018, https://doi.org/10.7733/jnfcwt.2018.16.4.397
  2. 용존 6가 우라늄 및 실리카 표면 흡착 6가 우라늄 화학종 분포 연구 vol.18, pp.1, 2017, https://doi.org/10.7733/jnfcwt.2020.18.1.63