DOI QR코드

DOI QR Code

Genetics of hereditary nephrotic syndrome: a clinical review

  • Ha, Tae-Sun (Department of Pediatrics, College of Medicine and Medical Research Institute, Chungbuk National University)
  • Received : 2016.03.12
  • Accepted : 2016.05.25
  • Published : 2017.03.15

Abstract

Advances in podocytology and genetic techniques have expanded our understanding of the pathogenesis of hereditary steroid-resistant nephrotic syndrome (SRNS). In the past 20 years, over 45 genetic mutations have been identified in patients with hereditary SRNS. Genetic mutations on structural and functional molecules in podocytes can lead to serious injury in the podocytes themselves and in adjacent structures, causing sclerotic lesions such as focal segmental glomerulosclerosis or diffuse mesangial sclerosis. This paper provides an update on the current knowledge of podocyte genes involved in the development of hereditary nephrotic syndrome and, thereby, reviews genotype-phenotype correlations to propose an approach for appropriate mutational screening based on clinical aspects.

Keywords

References

  1. Eddy AA, Symons JM. Nephrotic syndrome in childhood. Lancet 2003;362:629-39. https://doi.org/10.1016/S0140-6736(03)14184-0
  2. Wiggins RC. The spectrum of podocytopathies: a unifying view of glomerular diseases. Kidney Int 2007;71:1205-14. https://doi.org/10.1038/sj.ki.5002222
  3. Sinha A, Bagga A. Nephrotic syndrome. Indian J Pediatr 2012;79: 1045-55. https://doi.org/10.1007/s12098-012-0776-y
  4. Kim JS, Bellew CA, Silverstein DM, Aviles DH, Boineau FG, Vehaskari VM. High incidence of initial and late steroid resistance in childhood nephrotic syndrome. Kidney Int 2005;68:1275-81. https://doi.org/10.1111/j.1523-1755.2005.00524.x
  5. Mekahli D, Liutkus A, Ranchin B, Yu A, Bessenay L, Girardin E, et al. Long-term outcome of idiopathic steroid-resistant nephrotic syndrome: a multicenter study. Pediatr Nephrol 2009;24:1525-32. https://doi.org/10.1007/s00467-009-1138-5
  6. Buscher AK, Kranz B, Buscher R, Hildebrandt F, Dworniczak B, Pennekamp P, et al. Immunosuppression and renal outcome in congenital and pediatric steroid-resistant nephrotic syndrome. Clin J Am Soc Nephrol 2010;5:2075-84. https://doi.org/10.2215/CJN.01190210
  7. McTaggart SJ. Childhood urinary conditions. Aust Fam Physician 2005;34:937-41.
  8. Srivastava T, Simon SD, Alon US. High incidence of focal segmental glomerulosclerosis in nephrotic syndrome of childhood. Pediatr Nephrol 1999;13:13-8. https://doi.org/10.1007/s004670050555
  9. D'Agati VD. The spectrum of focal segmental glomerulosclerosis: new insights. Curr Opin Nephrol Hypertens 2008;17:271-81. https://doi.org/10.1097/MNH.0b013e3282f94a96
  10. Woroniecki RP, Kopp JB. Genetics of focal segmental glomerulosclerosis. Pediatr Nephrol 2007;22:638-44. https://doi.org/10.1007/s00467-007-0445-y
  11. Hildebrandt F. Genetic kidney diseases. Lancet 2010;375:1287-95. https://doi.org/10.1016/S0140-6736(10)60236-X
  12. Caridi G, Trivelli A, Sanna-Cherchi S, Perfumo F, Ghiggeri GM. Familial forms of nephrotic syndrome. Pediatr Nephrol 2010;25: 241-52. https://doi.org/10.1007/s00467-008-1051-3
  13. Joshi S, Andersen R, Jespersen B, Rittig S. Genetics of steroid-resistant nephrotic syndrome: a review of mutation spectrum and suggested approach for genetic testing. Acta Paediatr 2013;102: 844-56. https://doi.org/10.1111/apa.12317
  14. Benoit G, Machuca E, Antignac C. Hereditary nephrotic syndrome: a systematic approach for genetic testing and a review of associated podocyte gene mutations. Pediatr Nephrol 2010;25:1621-32. https://doi.org/10.1007/s00467-010-1495-0
  15. Rood IM, Deegens JK, Wetzels JF. Genetic causes of focal segmental glomerulosclerosis: implications for clinical practice. Nephrol Dial Transplant 2012;27:882-90. https://doi.org/10.1093/ndt/gfr771
  16. Gbadegesin RA, Winn MP, Smoyer WE. Genetic testing in nephrotic syndrome-challenges and opportunities. Nat Rev Nephrol 2013; 9:179-84.
  17. Lovric S, Ashraf S, Tan W, Hildebrandt F. Genetic testing in steroid -resistant nephrotic syndrome: when and how? Nephrol Dial Transplant 2016;31:1802-13. https://doi.org/10.1093/ndt/gfv355
  18. Schrodi SJ, Mukherjee S, Shan Y, Tromp G, Sninsky JJ, Callear AP, et al. Genetic-based prediction of disease traits: prediction is very difficult, especially about the future. Front Genet 2014;5:162.
  19. Sampson MG, Pollak MR. Opportunities and challenges of genotyping patients with nephrotic syndrome in the genomic era. Semin Nephrol 2015;35:212-21. https://doi.org/10.1016/j.semnephrol.2015.04.002
  20. Sampson MG, Hodgin JB, Kretzler M. Defining nephrotic syndrome from an integrative genomics perspective. Pediatr Nephrol 2015;30:51-63. https://doi.org/10.1007/s00467-014-2857-9
  21. Renkema KY, Stokman MF, Giles RH, Knoers NV. Next-generation sequencing for research and diagnostics in kidney disease. Nat Rev Nephrol 2014;10:433-44. https://doi.org/10.1038/nrneph.2014.95
  22. Brown EJ, Pollak MR, Barua M. Genetic testing for nephrotic syndrome and FSGS in the era of next-generation sequencing. Kidney Int 2014;85:1030-8. https://doi.org/10.1038/ki.2014.48
  23. Neveling K, Feenstra I, Gilissen C, Hoefsloot LH, Kamsteeg EJ, Mensenkamp AR, et al. A post-hoc comparison of the utility of sanger sequencing and exome sequencing for the diagnosis of heterogeneous diseases. Hum Mutat 2013;34:1721-6. https://doi.org/10.1002/humu.22450
  24. McCarthy HJ, Bierzynska A, Wherlock M, Ognjanovic M, Kerecuk L, Hegde S, et al. Simultaneous sequencing of 24 genes associated with steroid-resistant nephrotic syndrome. Clin J Am Soc Nephrol 2013;8:637-48. https://doi.org/10.2215/CJN.07200712
  25. Mundel P, Shankland SJ. Podocyte biology and response to injury. J Am Soc Nephrol 2002;13:3005-15. https://doi.org/10.1097/01.ASN.0000039661.06947.FD
  26. Patrakka J, Tryggvason K. Molecular make-up of the glomerular filtration barrier. Biochem Biophys Res Commun 2010;396:164-9. https://doi.org/10.1016/j.bbrc.2010.04.069
  27. Pavenstadt H, Kriz W, Kretzler M. Cell biology of the glomerular podocyte. Physiol Rev 2003;83:253-307. https://doi.org/10.1152/physrev.00020.2002
  28. Faul C, Asanuma K, Yanagida-Asanuma E, Kim K, Mundel P. Actin up: regulation of podocyte structure and function by components of the actin cytoskeleton. Trends Cell Biol 2007;17:428-37. https://doi.org/10.1016/j.tcb.2007.06.006
  29. Welsh GI, Saleem MA. The podocyte cytoskeleton: key to a functioning glomerulus in health and disease. Nat Rev Nephrol 2011; 8:14-21.
  30. Reiser J, Kriz W, Kretzler M, Mundel P. The glomerular slit diaphragm is a modified adherens junction. J Am Soc Nephrol 2000;11: 1-8.
  31. Ha TS. Roles of adaptor proteins in podocyte biology. World J Nephrol 2013;2:1-10. https://doi.org/10.5527/wjn.v2.i1.1
  32. Machuca E, Benoit G, Antignac C. Genetics of nephrotic syndrome: connecting molecular genetics to podocyte physiology. Hum Mol Genet 2009;18(R2):R185-94. https://doi.org/10.1093/hmg/ddp328
  33. McCarthy HJ, Saleem MA. Genetics in clinical practice: nephrotic and proteinuric syndromes. Nephron Exp Nephrol 2011;118:e1-8. https://doi.org/10.1159/000320878
  34. Akchurin O, Reidy KJ. Genetic causes of proteinuria and nephrotic syndrome: impact on podocyte pathobiology. Pediatr Nephrol 2015;30:221-33. https://doi.org/10.1007/s00467-014-2753-3
  35. Chen YM, Liapis H. Focal segmental glomerulosclerosis: molecular genetics and targeted therapies. BMC Nephrol 2015;16:101. https://doi.org/10.1186/s12882-015-0090-9
  36. Bierzynska A, Soderquest K, Koziell A. Genes and podocytes - new insights into mechanisms of podocytopathy. Front Endocrinol (Lausanne) 2015;5:226.
  37. Kari JA, Montini G, Bockenhauer D, Brennan E, Rees L, Trompeter RS, et al. Clinico-pathological correlations of congenital and infantile nephrotic syndrome over twenty years. Pediatr Nephrol 2014;29:2173-80. https://doi.org/10.1007/s00467-014-2856-x
  38. Machuca E, Benoit G, Nevo F, Tete MJ, Gribouval O, Pawtowski A, et al. Genotype-phenotype correlations in non-Finnish congenital nephrotic syndrome. J Am Soc Nephrol 2010;21:1209-17. https://doi.org/10.1681/ASN.2009121309
  39. Hinkes BG, Mucha B, Vlangos CN, Gbadegesin R, Liu J, Hasselbacher K, et al. Nephrotic syndrome in the first year of life: two thirds of cases are caused by mutations in 4 genes (NPHS1, NPHS2, WT1, and LAMB2). Pediatrics 2007;119:e907-19. https://doi.org/10.1542/peds.2006-2164
  40. Heeringa SF, Vlangos CN, Chernin G, Hinkes B, Gbadegesin R, Liu J, et al. Thirteen novel NPHS1 mutations in a large cohort of children with congenital nephrotic syndrome. Nephrol Dial Transplant 2008;23:3527-33. https://doi.org/10.1093/ndt/gfn271
  41. Patrakka J, Kestila M, Wartiovaara J, Ruotsalainen V, Tissari P, Lenkkeri U, et al. Congenital nephrotic syndrome (NPHS1): features resulting from different mutations in Finnish patients. Kidney Int 2000;58:972-80. https://doi.org/10.1046/j.1523-1755.2000.00254.x
  42. Koziell A, Grech V, Hussain S, Lee G, Lenkkeri U, Tryggvason K, et al. Genotype/phenotype correlations of NPHS1 and NPHS2 mutations in nephrotic syndrome advocate a functional inter-relationship in glomerular filtration. Hum Mol Genet 2002;11:379-88. https://doi.org/10.1093/hmg/11.4.379
  43. Schultheiss M, Ruf RG, Mucha BE, Wiggins R, Fuchshuber A, Lichtenberger A, et al. No evidence for genotype/phenotype correlation in NPHS1 and NPHS2 mutations. Pediatr Nephrol 2004; 19:1340-8. https://doi.org/10.1007/s00467-004-1629-3
  44. Wong W, Morris MC, Kara T. Congenital nephrotic syndrome with prolonged renal survival without renal replacement therapy. Pediatr Nephrol 2013;28:2313-21. https://doi.org/10.1007/s00467-013-2584-7
  45. Barisoni L, Schnaper HW, Kopp JB. A proposed taxonomy for the podocytopathies: a reassessment of the primary nephrotic diseases. Clin J Am Soc Nephrol 2007;2:529-42. https://doi.org/10.2215/CJN.04121206
  46. Barisoni L, Schnaper HW, Kopp JB. Advances in the biology and genetics of the podocytopathies: implications for diagnosis and therapy. Arch Pathol Lab Med 2009;133:201-16.
  47. Sadowski CE, Lovric S, Ashraf S, Pabst WL, Gee HY, Kohl S, et al. A single-gene cause in 29.5% of cases of steroid-resistant nephrotic syndrome. J Am Soc Nephrol 2015;26:1279-89. https://doi.org/10.1681/ASN.2014050489
  48. Hildebrandt F, Heeringa SF. Specific podocin mutations determine age of onset of nephrotic syndrome all the way into adult life. Kidney Int 2009;75:669-71. https://doi.org/10.1038/ki.2008.693
  49. Conlon PJ, Butterly D, Albers F, Rodby R, Gunnells JC, Howell DN. Clinical and pathologic features of familial focal segmental glomerulosclerosis. Am J Kidney Dis 1995;26:34-40. https://doi.org/10.1016/0272-6386(95)90150-7
  50. Singh L, Singh G, Dinda AK. Understanding podocytopathy and its relevance to clinical nephrology. Indian J Nephrol 2015;25:1-7. https://doi.org/10.4103/0971-4065.134531
  51. Zenker M, Machuca E, Antignac C. Genetics of nephrotic syndrome: new insights into molecules acting at the glomerular filtration barrier. J Mol Med (Berl) 2009;87:849-57. https://doi.org/10.1007/s00109-009-0505-9
  52. Chernin G, Vega-Warner V, Schoeb DS, Heeringa SF, Ovunc B, Saisawat P, et al. Genotype/phenotype correlation in nephrotic syndrome caused by WT1 mutations. Clin J Am Soc Nephrol 2010; 5:1655-62. https://doi.org/10.2215/CJN.09351209
  53. Zenker M, Aigner T, Wendler O, Tralau T, Muntefering H, Fenski R, et al. Human laminin beta2 deficiency causes congenital nephrosis with mesangial sclerosis and distinct eye abnormalities. Hum Mol Genet 2004;13:2625-32. https://doi.org/10.1093/hmg/ddh284
  54. Hasselbacher K, Wiggins RC, Matejas V, Hinkes BG, Mucha B, Hoskins BE, et al. Recessive missense mutations in LAMB2 expand the clinical spectrum of LAMB2-associated disorders. Kidney Int 2006;70:1008-12. https://doi.org/10.1038/sj.ki.5001679
  55. Boyer O, Woerner S, Yang F, Oakeley EJ, Linghu B, Gribouval O, et al. LMX1B mutations cause hereditary FSGS without extrarenal involvement. J Am Soc Nephrol 2013;24:1216-22. https://doi.org/10.1681/ASN.2013020171
  56. Boyer O, Nevo F, Plaisier E, Funalot B, Gribouval O, Benoit G, et al. INF2 mutations in Charcot-Marie-Tooth disease with glomerulopathy. N Engl J Med 2011;365:2377-88. https://doi.org/10.1056/NEJMoa1109122
  57. Seri M, Cusano R, Gangarossa S, Caridi G, Bordo D, Lo Nigro C, et al. Mutations in MYH9 result in the May-Hegglin anomaly, and Fechtner and Sebastian syndromes. The May-Heggllin/Fechtner Syndrome Consortium. Nat Genet 2000;26:103-5. https://doi.org/10.1038/79063

Cited by

  1. Recurrence of nephrotic syndrome following kidney transplantation is associated with initial native kidney biopsy findings vol.33, pp.10, 2018, https://doi.org/10.1007/s00467-018-3994-3
  2. The status quo and challenges of genetic diagnosis in children with steroid-resistant nephrotic syndrome vol.14, pp.2, 2017, https://doi.org/10.1007/s12519-018-0156-4
  3. Nephrin Signaling in the Podocyte: An Updated View of Signal Regulation at the Slit Diaphragm and Beyond vol.9, pp.None, 2017, https://doi.org/10.3389/fendo.2018.00302
  4. Moderate Nucleoporin 133 deficiency leads to glomerular damage in zebrafish vol.9, pp.None, 2017, https://doi.org/10.1038/s41598-019-41202-4
  5. Genetic testing in steroid-resistant nephrotic syndrome: why, who, when and how? vol.34, pp.2, 2017, https://doi.org/10.1007/s00467-017-3838-6
  6. Circulating Permeability Factors in Idiopathic Nephrotic Syndrome vol.23, pp.1, 2019, https://doi.org/10.3339/jkspn.2019.23.1.7
  7. Mutational spectrum and novel candidate genes in Chinese children with sporadic steroid-resistant nephrotic syndrome vol.85, pp.6, 2019, https://doi.org/10.1038/s41390-019-0321-z
  8. Optimized nonviral gene delivery for primary urinary renal progenitor cells to enhance cell migration vol.107, pp.12, 2017, https://doi.org/10.1002/jbm.a.36775
  9. Long-term outcome in a case series of Denys–Drash syndrome vol.12, pp.6, 2017, https://doi.org/10.1093/ckj/sfz022
  10. Primary coenzyme Q10 Deficiency-6 (COQ10D6): Two siblings with variable expressivity of the renal phenotype vol.63, pp.1, 2017, https://doi.org/10.1016/j.ejmg.2019.01.011
  11. Next-Generation Sequencing-Based Genetic Diagnostic Strategies of Inherited Kidney Diseases vol.7, pp.6, 2017, https://doi.org/10.1159/000519095
  12. Crumbs homolog 2 mutation in two siblings with steroid-resistant nephrotic syndrome: Two case reports vol.9, pp.13, 2021, https://doi.org/10.12998/wjcc.v9.i13.3056